不同干细胞来源外泌体抗心肌纤维化的研究进展及中医药干预现状

2024-04-30 02:34王文洁周睿邢作英邱伯雍朱明军王永霞
中西医结合心脑血管病杂志 2024年5期
关键词:外泌体综述干细胞

王文洁 周睿 邢作英 邱伯雍 朱明军 王永霞

摘要 心肌纤维化是与心力衰竭等多种心血管疾病密切相关的一种病理表现,适度的纤维化有利于保护心脏,过度纤维化导致严重的心功能不全甚至死亡。因此,积极寻找确切、有效的防治心肌纤维化手段对心血管疾病诊疗具有重要意义。心肌在体内和体外发生病理性促纤维化病变时,不同干细胞来源的外泌体可有效阻止或延缓心肌纤维化进程,且在中医药干预作用下增强整体治疗效果。综述不同类型干细胞来源的外泌体抗心肌纤维化作用及中医药干预现状,以期为心血管疾病的防治提供新思路和新方法。

关键词 心肌纤维化;干细胞;外泌体;中医药;综述

doi:10.12102/j.issn.1672-1349.2024.05.014

基金项目 国家自然科学基金项目(No.82074229);国家中医药管理局中医药循证能力建设项目(No.2019XZZX-XXG003)

作者单位 1.河南中医药大学(郑州  450000);2.河南中医药大学第一附属医院(郑州  450000)

通讯作者 王永霞,E-mail:wyxchzhq@163.com

引用信息 王文洁,周睿,邢作英,等.不同干细胞来源外泌体抗心肌纤维化的研究进展及中医药干预现状[J].中西医结合心脑血管病杂志,2024,22(5):847-851.

心肌纤维化是以成纤维细胞活化,细胞外基质如胶原蛋白Ⅰ和Ⅲ过度沉积[1],心脏间质扩张纤维化为特征,存在于高血压、心力衰竭、心肌梗死、心房颤动、风湿性心脏病和扩张型心肌病等多种心血管疾病中的一种共性病理表现,是心脏重构的关键诱因。活化的成纤维细胞是心肌纤维化的中心效应细胞,基质蛋白产生的主要参与者。胶原蛋白的适度产生可补偿损伤产生的死亡细胞,有利于保持心脏结构完整性,避免心脏破裂。然而,过度沉积导致心肌僵硬,心脏收缩、舒张功能障碍和传导异常[2],甚至发生严重心功能不全或心源性猝死[3]。心肌纤维化发病机制复杂,涉及肾素-血管紧张素-醛固酮系统、氧化应激[4]、炎症反应、线粒体功能障碍[5]、非编码RNA[6]等,对其进行早期诊断、评估及治疗至关重要。目前临床用于治疗心力衰竭的药物如血管紧张素转换酶抑制剂、β受体阻滞剂、沙库巴曲缬沙坦钠片虽可一定程度延缓心肌纤维化进程,但并不能满足临床需求,心肌纤维化防治仍需更多安全、可靠的解决方案。

干细胞疗法在心血管保护、再生修复、抑制纤维化和凋亡、增强心肌收缩力及改善心功能等方面发挥着重要作用,但供应不稳定、输注毒性、低存活率和免疫排斥等问题限制了干细胞疗法的应用[7-8]。进一步研究显示,其有益效果主要是旁分泌产生的外泌体介导的[9]。外泌体是由多种类型细胞分泌的直径30~200 nm的细胞外囊泡,可携带特定的蛋白质、脂质、核酸和糖偶联物,参与细胞间通信[10-11],在调节癌症在内的较多疾病生理病理过程中充当重要的分子载体[12],并作为药物载体输送至靶器官,可增加治疗药物的局部浓度,最大限度地减少副作用,具有低毒性、低免疫原性和高工程性,可能为各种疾病提供无细胞治疗[13-14]。相关研究表明,在体内和体外心肌发生病理性促纤维化病变时,不同干细胞来源的外泌体可显著减小或抑制心肌纤维化,替代干细胞进行心脏修复,在心血管疾病的治疗方面具有巨大潜力。综述不同类型干细胞来源的外泌体抗心肌纤维化作用的最新研究及中医药干预现状,并对外泌体包含的内容物进行梳理总结(见表1),以期挖掘出具有潜力的心肌纤维化诊断标志物和治疗靶点。

1 MSCs

MSCs是从骨髓、脐带、脂肪和胎盘组织等较多生物来源中分离出的非造血、多能、成体干细胞[15],外泌体在MSCs相关的心脏保护作用中发挥着重要作用。有研究表明,MSCs来源的外泌体(MSCs-derived exosomes,MSC-Exo)通过抑制zeste基因增强子同源物2(enhancer of zeste homolog 2,EZH2)激活下游高遷移率族蛋白A2(high mobility group A2,HMGA2)并影响磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/AKT)通路,抑制胶原蛋白Ⅰ和胶原蛋白Ⅲ表达,增加上皮-间质转化(epithelial-mesenchymal transition,EMT),减轻心肌梗死大鼠纤维化[16]。MSC-Exo可能通过抑制转化生长因子(TGF)-β1/Smad2/3信号通路抑制高糖诱导的成纤维细胞转化,降低糖尿病大鼠左心室胶原水平,减轻糖尿病诱导的心肌损伤和纤维化[17-18]。另有研究显示,源自HIF-1α修饰的MSC-Exo可促进心肌梗死大鼠新血管形成,抑制纤维化,保留心脏功能,较单纯外泌体治疗更有效[19]。来自年轻的MSC-Exo减小纤维化的作用优于来自衰老MSC-Exo,上调衰老MSC-Exo中miR-221-3p表达可能通过张力蛋白同源物(phosphate and tension homology,PTEN)/AKT通路显著减小胶原蛋白面积、纤维化区域,抑制心肌纤维化[20]。MSC-Exo在经干扰素-γ处理后外泌体中miR-21显著上调,并靶向抑制BTG2表达减少纤维化,改善心功能[21]。

1.1 骨髓间充质干细胞(bone marrow MSCs,BMSCs)

成人MSCs常见的来源是骨髓[22]。BMSCs来源的外泌体(BMSCs-derived exosomes,BMSC-Exo)通过提高miR-133a表达以下调决定因子样蛋白1(mastermind-like 1,MAML1)水平,显著改善病毒性心肌炎大鼠心功能和心肌纤维化[23]。有研究表明,BMSC-Exo可降低暴露于血管紧张素(Ang)Ⅱ下的成纤维细胞中胶原蛋白Ⅰ和Ⅲ表达,增加周期蛋白依赖性激酶抑制因子4a(the inhibitor of cyclin-dependent kinase 4a,p16INK4a)表达,促进成纤维细胞衰老,抑制纤维化反应,减少心脏纤维化[24]。Pu等[25]采用过表达miR-30e的BMSC-Exo治疗心肌梗死大鼠,可抑制血凝素样氧化型低密度脂蛋白受体1(lectin-like oxidized low density lipoprotein receptor-1,LOX1)的表达,下调核因子(NF)-κB p65/Caspase-9信号通路活性,改善心肌组织病理损伤和纤维化。Wang等[26]采用过表达miR-129-5p的BMSC-Exo治疗心肌梗死小鼠,表现出对心肌梗死保护作用并抑制了纤维化。BMSC-Exo过表达Nrf2通过Nrf2/血红素加氧酶1(heme oxygenase 1,HO-1)通路减轻心房颤动诱导的心肌纤维化[27]。有研究发现,在脂多糖刺激下产生的BMSC-Exo可降低心肌梗死后小鼠炎性因子表达,改善心肌收缩功能和纤维化[28]。缺氧处理的BMSC-Exo增强了外泌体中miR-210表达,减少了纤维化[29]。有研究将过表达miR-19a/19b的BMSC-Exo和骨髓间充质干细胞移植联合应用于心肌梗死的临床前模型,显著促进了心脏功能的恢复,减小了心脏纤维化面积[30]。

1.2 人脐带间充质干细胞(human umbilical cord MSCs,UMSCs)

UMSCs来源的外泌体可显著降低扩张型心肌病大鼠α-平滑肌肌动蛋白、Smad2、心肌组织胶原蛋白Ⅰ表达,减轻心肌纤维化水平,改善心功能[31],通过递送环状RNA同源域相互作用蛋白激酶3(circular RNA homeodomain-iteracting protein kinase 3,circHIPK3)降低心肌梗死小鼠梗死区域纤维化程度[32]。Zou等[33]将UMSCs来源外泌体结合一种可注射的导电水凝胶,产生Gel@Exo复合系统,Gel@Exo给药显著改善了心脏受伤大鼠心脏功能,缩小了纤维化面积,并延长了外泌体在缺血心肌中的保留时间。人白细胞抗原轻链β2微球蛋白缺失的UMSCs来源外泌体中富含miR-24,通过靶向Bim发挥抑制心脏纤维化作用,较来自UMSCs的外泌体更有效[34]。由巨噬细胞迁移抑制因子工程化的UMSCs来源外泌体中miR-133a-3p显著升高,增加了AKT蛋白的磷酸化,在体内外均可减少纤维化,保护心脏功能[35]。

1.3 脂肪间充质干细胞

脂肪干细胞(adipose derived stem cells,ADSCs)是在毛囊底部的皮下、真皮片、毛囊间真皮和皮下组织中鉴定的间充质干细胞[36]。有研究显示。ADSCs来源外泌体过表达miR-126可降低H9c2细胞纤维化相关蛋白表达,显著减轻心肌梗死大鼠心脏纤维化[37]。ADSCs来源外泌体过表达miR-146a通过下调早期生长反应1(early growth response 1,EGR1)表达逆转心肌梗死或缺氧诱导的Toll样受体4(Toll-like receptor 4,TLR4)/NF-κB信号激活,进而抑制心肌梗死诱导的纤维化,且作用优于单纯外泌体治疗组[38]。ADSCs来源的外泌体显著降低了多柔比星/曲妥珠单抗给药大鼠心脏组织中纤维化标志物结缔组织生长因子(connective tissue growth factor,CTGF)、胶原蛋白Ⅰ和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)的mRNA水平[39],可能通过激活1-磷酸鞘氨醇(sphingosine 1-phosphate,S1P)/鞘氨醇激酶1(sphingosine kinase 1,SK1)/1-磷酸鞘氨醇受体1(sphingosine-1-phosphate receptor 1,S1PR1)信号传导和促进巨噬细胞M2极化,抑制心肌梗死诱导的心肌纤维化,改善心肌梗死后心脏损伤[40]。Wang等[41]将adMSCs来源的外泌体(adipose-derived MSCs-Exo,adMSCs-Exo)作用到氧-葡萄糖剥夺处理的小鼠心肌细胞中,miR-671在细胞中显著上调,并直接靶向转化生长因子β受体2(transforming growth factor β receptor 2,TGFBR2),降低Smad2磷酸化,从而在体内和体外减少了心肌纤维化。adMSCs-Exo可能通过降低miR-423-5p表达,抑制PI3K/AKT信号通路,改善心力衰竭大鼠心肌损伤和纤维化[42]。有研究表明,adMSCs-Exo通过上调沉默信息调节因子1(silent information regulator 1,SIRT1)减少急性心肌梗死后梗死面积和心房纤维化面积[43]。

2 CPCs

CPCs又称为心脏干细胞,是由心脏干细胞分化而来。CPCs来源的外泌体高度富集miR-146a-5p,可减弱间质胶原蛋白Ⅰ沉积,预防阿霉素/曲妥珠单抗诱导的心肌纤维化,在心肌细胞的更新和修复中发挥着重要作用[44]。有研究显示,来自新生儿的CPCs外泌体可减少纤维化,改善心功能,来自较大儿童的CPCs外泌体在缺氧条件下可发挥修复作用[45]。

3 CDCs

CDCs是来源于心脏组织本身的干细胞[46],心脏球来源细胞分泌的外泌体(CDC-secreted exosome,CDCex)高度富含miR-146a-5p,通过抑制促炎细胞因子和转录物减少心肌纤维化[47]。CDCex来源的YF1可逆转肥厚型心肌病相关纤维化信号通路,降低c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)磷酸化、c-Jun表达和Smad2磷酸化,减轻AngⅡ诱导的纤维化[48-49]。

4 EPCs

EPCs修复心脏的作用与旁分泌机制密切相关。有研究表明,内皮祖细胞来源的外泌体(endothelial progenitor cell-derived exosomes,EPC-Exos)富含miR-363-3p和miR-218-5p,可上调p53并下调调节Y蛋白(junctional mediating and regulator Y protein,JMY)表達,通过靶向肿瘤抑制基因p53(tumor suppressor gene p53,p53)/连接介导和JMY信号通路促进间充质-内皮细胞转化,抑制心肌纤维化[50]。EPC-Exos过表达miR-1246或miR-1290分别诱导ELF5、SP1表达增加,抑制心脏组织α-平滑肌肌动蛋白表达,改善心肌梗死后心脏纤维化[51]。人外周血中EPC-Exos在体外可抑制间充质-内皮转化和降低高迁移率族蛋白1(high mobility group protein 1,HMGB1)、α-平滑肌肌动蛋白、波形蛋白、胶原蛋白Ⅰ及TGF-β、肿瘤坏死因子(TNF)-α心肌纤维化调节蛋白表达[52]。

5 中医药干预外泌体

中医古籍中无关于心肌纤维化的明确记载,现代医家根据临床症状将其归属于“心悸”“心衰”“胸痹”等范畴,病机特点以气血阴阳亏损为本,痰、饮、瘀、火扰心为标[53]。中医药具有多成分、多靶点、多途径及整体观念、辨证论治等特点,在防治心肌纤维化方面显示出独特优势。一些中药复方及中成药如生脉饮、黄芪桂枝五物汤、芪参益气滴丸、参松养心胶囊等,中药黄芪、鹿茸、川芎、丹参、益母草、三七[53-54]等提取物均对心肌纤维化的治疗起到良好的作用。有研究显示,外泌体在中医药干预下可增强整体治疗效果,中医药有效防治心肌纤维化的机制可能与调控外泌体及相关内容物有关,黄芪及其配方的有效活性成分,尤其是黄芪甲苷Ⅳ、黄芪多糖、黄芪总皂苷、黄芪三萜皂苷和环黄芪醇具有对抗心肌纤维化的潜在作用[55],黄芪甲苷Ⅳ可提高人EPCs分泌的外泌体功能,并增强外泌体中miRNA-126表达[56]。黄芪总皂苷联合甘草酸预处理的外泌体可抑制细胞中胶原蛋白Ⅰ和α-平滑肌肌动蛋白表达,发挥抗纤维化作用[57]。人参皂苷Rh2通过促进肌成纤维细胞衰老和逆转内皮-间充质转化中已建立的肌成纤维分化减轻纤维化[58],增强BMSCs外泌体对心肌损伤的保护作用,改善炎症微环境[59]。

6 小結与展望

综上所述,包括MSCs、CPCs、CDCs、EPCs在内多种干细胞来源的外泌体均可显著抑制心肌纤维化的发生发展,中医药可能通过调控外泌体及其相关内容发挥有效抗心肌纤维化作用。然而,目前的研究存在一些不足:1)不同干细胞来源的外泌体抗心肌纤维化作用是否有差异、供体年龄对其作用的影响及是否具有不良作用需进一步探索。2)干细胞来源的外泌体中包含的内容物复杂,尚未明确哪些在防治心肌纤维化中发挥关键作用,缺乏大型临床试验验证,应结合现代医学代谢组学、蛋白组学、基因组学技术等新技术、新方法深入挖掘其抗心肌纤维化的作用机制,为今后临床治疗提供充分的科学依据。3)干细胞分泌的外泌体数量较少,不能满足临床试验需求,提高其稳定性、靶向性及延长半衰期的工程化改造外泌体的方法值得研究者在抗心肌纤维化方面进行深入研究。4)中医药防治心肌纤维化具有独特优势,其是否通过调控外泌体发挥抗心肌纤维化的作用有待进一步体内外实验验证。今后基于中医药有效成分开发具有协同治疗效果和靶向能力的外泌体药物递送载体以防治心肌纤维化有较大的研究空间。

参考文献:

[1] FAN D,KASSIRI Z.Modulation of cardiac fibrosis in and beyond cells[J].Frontiers in Molecular Biosciences,2021,8:750626.

[2] KUROSE H.Cardiac fibrosis and fibroblasts[J].Cells,2021,10(7):1716.

[3] TRAVERS J G,KAMAL F A,ROBBINS J,et al.Cardiac fibrosis:the fibroblast awakens[J].Circulation Research,2016,118(6):1021-1040.

[4] GYNGYSI M,WINKLER J,RAMOS I,et al.Myocardial fibrosis:biomedical research from bench to bedside[J].European Journal of Heart Failure,2017,19(2):177-191.

[5] LI X Y,ZHANG W,CAO Q T,et al.Mitochondrial dysfunction in fibrotic diseases[J].Cell Death Discovery,2020,6:80.

[6] YU Y H,SUN J H,WANG R,et al.Curcumin management of myocardial fibrosis and its mechanisms of action:a review[J].The American Journal of Chinese Medicine,2019,47(8):1675-1710.

[7] 张海峰,韦植.干细胞在心血管疾病治疗中的应用研究[J].微创医学,2022,17(3):267-271.

[8] HADE M D,SUIRE C N,SUO Z C.Mesenchymal stem cell-derived exosomes:applications in regenerative medicine[J].Cells,2021,10(8):1959.

[9] BARRECA M M,CANCEMI P,GERACI F.Mesenchymal and induced pluripotent stem cells-derived extracellular vesicles:the new frontier for regenerative medicine?[J].Cells,2020,9(5):1163.

[10] KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.

[11] PEGTEL D M,GOULD S J.Exosomes[J].Annual Review of Biochemistry,2019,88:487-514.

[12] ZHU L,SUN H T,WANG S,et al.Isolation and characterization of exosomes for cancer research[J].Journal of Hematology & Oncology,2020,13(1):152.

[13] BATRAKOVA E V,KIM M S.Using exosomes,naturally-equipped nanocarriers,for drug delivery[J].Journal of Controlled Release,2015,219:396-405.

[14] LIANG Y J,DUAN L,LU J P,et al.Engineering exosomes for targeted drug delivery[J].Theranostics,2021,11(7):3183-3195.

[15] MAQSOOD M,KANG M Z,WU X T,et al.Adult mesenchymal stem cells and their exosomes:sources,characteristics,and application in regenerative medicine[J].Life Sciences,2020,256:118002.

[16] JIAO W,HAO J,XIE Y N,et al.EZH2 mitigates the cardioprotective effects of mesenchymal stem cell-secreted exosomes against infarction via HMGA2-mediated PI3K/AKT signaling[J].BMC Cardiovascular Disorders,2022,22(1):95.

[17] LIN Y,ZHANG F,LIAN X F,et al.Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-β1/Smad2 signaling pathway[J].Cellular and Molecular Biology,2019,65(7):123-126.

[18] 蘭蓓蓓,王娟娟,邵联波,等.间充质干细胞来源的外泌体通过TGF-β1/Smad2/3信号通路抑制高糖诱导的成纤维细胞转分化[J].中国细胞生物学学报,2017,39(7):916-925.

[19] SUN J C,SHEN H,SHAO L B,et al.HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis[J].Stem Cell Research & Therapy,2020,11(1):373.

[20] SUN L,ZHU W W,ZHAO P C,et al.Down-regulated exosomal microRNA-221-3p derived from senescent mesenchymal stem cells impairs heart repair[J].Frontiers in Cell and Developmental Biology,2020,8:263.

[21] ZHANG J,LU Y,MAO Y M,et al.IFN-γ enhances the efficacy of mesenchymal stromal cell-derived exosomes via miR-21 in myocardial infarction rats[J].Stem Cell Research & Therapy,2022,13(1):333.

[22] LIU Y,HOLMES C.Tissue regeneration capacity of extracellular vesicles isolated from bone marrow-derived and adipose-derived mesenchymal stromal/stem cells[J].Frontiers in Cell and Developmental Biology,2021,9:648098.

[23] LI Q M,JIN Y P,YE X Q,et al.Bone marrow mesenchymal stem cell-derived exosomal microRNA-133a restrains myocardial fibrosis and epithelial-mesenchymal transition in viral myocarditis rats through suppressing MAML1[J].Nanoscale Research Letters,2021,16(1):111.

[24] CHEN F,LI X L,ZHAO J X,et al.Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling[J].In Vitro Cellular & Developmental Biology Animal,2020,56(7):567-576.

[25] PU L M,KONG X Y,LI H,et al.Exosomes released from mesenchymal stem cells overexpressing microRNA-30e ameliorate heart failure in rats with myocardial infarction[J].American Journal of Translational Research,2021,13(5):4007-4025.

[26] WANG S,DONG J J,LI L,et al.Exosomes derived from miR-129-5p modified bone marrow mesenchymal stem cells represses ventricular remolding of mice with myocardial infarction[J].Journal of Tissue Engineering and Regenerative Medicine,2022,16(2):177-187.

[27] XU L J,FAN Y C,WU L T,et al.Exosomes from bone marrow mesenchymal stem cells with overexpressed Nrf2 inhibit cardiac fibrosis in rats with atrial fibrillation[J].Cardiovascular Therapeutics,2022,2022:2687807.

[28] 傅小媚,霍然,鄧赛,等.脂多糖刺激的骨髓间充质干细胞来源外泌体改善小鼠心肌梗死后炎症和纤维化[J].中国临床药理学与治疗学,2019,24(8):841-851.

[29] ZHU J Y,LU K,ZHANG N,et al.Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J].Artificial Cells,Nanomedicine,and Biotechnology,2018,46(8):1659-1670.

[30] WANG S,LI L,LIU T,et al.MiR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction[J].Regenerative Medicine,2020,15(6):1749-1759.

[31] 柳爽爽,王本臻,毛成刚,等.人脐带间充质干细胞外泌体对多柔比星致扩张型心肌病大鼠心肌纤维化的影响[J].中华实用儿科临床杂志,2020,35(11):842-846.

[32] 张雨晴,王燕丽,严兵,等.人脐带间充质干细胞来源的外泌体通过circHIPK3促进心梗修复[J].复旦学报(自然科学版),2020,59(1):40-47.

[33] ZOU Y,LI L,LI Y,et al.Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel[J].ACS Applied Materials & Interfaces,2021,13(48):56892-56908.

[34] SHAO L B,ZHANG Y,PAN X B,et al.Knockout of beta-2 microglobulin enhances cardiac repair by modulating exosome imprinting and inhibiting stem cell-induced immune rejection[J].Cellular and Molecular Life Sciences,2020,77(5):937-952.

[35] ZHU W W,SUN L,ZHAO P C,et al.Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p[J].Journal of Nanobiotechnology,2021,19(1):61.

[36] MAZINI L,ROCHETTE L,ADMOU B,et al.Hopes and limits of adipose-derived stem cells(ADSCs) and mesenchymal stem cells(MSCs) in wound healing[J].International Journal of Molecular Sciences,2020,21(4):1306.

[37] LUO Q C,GUO D F,LIU G R,et al.Exosomes from miR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J].Cellular Physiology and Biochemistry,2017,44(6):2105-2116.

[38] PAN J J,ALIMUJIANG M,CHEN Q Y,et al.Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J].Journal of Cellular Biochemistry,2019,120(3):4433-4443.

[39] EBRAHIM N,AL SAIHATI H A,MOSTAFA O,et al.Prophylactic evidence of MSCs-derived exosomes in doxorubicin/trastuzumab-induced cardiotoxicity:beyond mechanistic target of NRG-1/Erb signaling pathway[J].International Journal of Molecular Sciences,2022,23(11):5967.

[40] DENG S Q,ZHOU X J,GE Z R,et al.Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J].The International Journal of Biochemistry & Cell Biology,2019,114:105564.

[41] WANG X,ZHU Y H,WU C C,et al.Adipose-derived mesenchymal stem cells-derived exosomes carry microRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis[J].Inflammation,2021,44(5):1815-1830.

[42] 孫理华,吕忠英,幸世峰,等.微小RNA-423-5p在脂肪间充质干细胞外泌体治疗老龄心力衰竭大鼠的作用及机制[J].中华老年心脑血管病杂志,2020,22(12):1308-1311.

[43] HUANG H,XU Z X,QI Y,et al.Exosomes from SIRT1-overexpressing ADSCs restore cardiac function by improving angiogenic function of EPCs[J].Molecular Therapy Nucleic Acids,2020,21:737-750.

[44] MILANO G,BIEMMI V,LAZZARINI E,et al.Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity[J].Cardiovascular Research,2020,116(2):383-392.

[45] AGARWAL U,GEORGE A,BHUTANI S,et al.Experimental,systems,and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients[J].Circulation Research,2017,120(4):701-712.

[46] ASHUR C,FRISHMAN W H.Cardiosphere-derived cells and ischemic heart failure[J].Cardiology in Review,2018,26(1):8-21.

[47] HIRAI K,OUSAKA D,FUKUSHIMA Y,et al.Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy[J].Science Translational Medicine,2020,12(573):eabb3336.

[48] HUANG F,NA N,IJICHI T,et al.Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice[J].Molecular Therapy Nucleic Acids,2021,24:951-960.

[49] CAMBIER L,GIANI J F,LIU W X,et al.Angiotensin Ⅱ-induced end-organ damage in mice is attenuated by human exosomes and by an exosomal Y RNA fragment[J].Hypertension,2018,72(2):370-380.

[50] KE X,YANG R F,WU F,et al.Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway[J].Oxidative Medicine and Cellular Longevity,2021,2021:5529430.

[51] HUANG Y L,CHEN L F,FENG Z M,et al.EPC-derived exosomal miR-1246 and miR-1290 regulate phenotypic changes of fibroblasts to endothelial cells to exert protective effects on myocardial infarction by targeting ELF5 and SP1[J].Frontiers in Cell and Developmental Biology,2021,9:647763.

[52] KE X,YANG D H,LIANG J W,et al.Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility group box 1 protein B1 expression[J].DNA and Cell Biology,2017,36(11):1018-1028.

[53] 劉颜,刘孟楠,杨廷富,等.中药防治心肌纤维化的研究进展[J].中药药理与临床,2023,39(2):101-109.

[54] 韦玉娜,莫雪梅,王强,等.黄芪桂枝五物汤合生脉饮治疗糖尿病心肌病心脏功能的临床疗效[J].中国实验方剂学杂志,2021,27(19):104-109.

[55] REN C Z,ZHAO X K,LIU K,et al.Research progress of natural medicine Astragalus mongholicus Bunge in treatment of myocardial fibrosis[J].Journal of Ethnopharmacology,2023,305:116128.

[56] XIONG W,BAI X,XIAO H,et al.Effects of Astragaloside Ⅳ on exosome secretion and its microRNA-126 expression in human endothelial progenitor cells[J].Chinese Journal of Burns,2020,36(12):1183-1190.

[57] DENG K L,DAI Z,YANG P,et al.LPS-induced macrophage exosomes promote the activation of hepatic stellate cells and the intervention study of total astragalus saponins combined with glycyrrhizic acid[J].Anatomical Record,2023,306(12):3097-3105.

[58] HOU J G,YUN Y,CUI C H,et al.Ginsenoside Rh2 mitigates doxorubicin-induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer-bearing mice[J].Cell Proliferation,2022,55(6):e13246.

[59] QI Z W,YAN Z P,WANG Y Y,et al.Ginsenoside Rh2 inhibits NLRP3 inflammasome activation and improves exosomes to alleviate hypoxia-induced myocardial injury[J].Frontiers in Immunology,2022,13:883946.

(收稿日期:2023-05-04)

(本文编辑薛妮)

猜你喜欢
外泌体综述干细胞
干细胞:“小细胞”造就“大健康”
外泌体miRNA在肝细胞癌中的研究进展
间充质干细胞外泌体在口腔组织再生中的研究进展
循环外泌体在心血管疾病中作用的研究进展
造血干细胞移植与捐献
外泌体在肿瘤中的研究进展
SEBS改性沥青综述
NBA新赛季综述
干细胞产业的春天来了?
JOURNAL OF FUNCTIONAL POLYMERS