植物精油生物活性作用机理研究进展

2012-08-15 00:50陈建烟李永裕吴少华
天然产物研究与开发 2012年9期
关键词:百里香丁香酚精油

陈建烟,李永裕,吴少华

福建农林大学园艺学院,福建农林大学园艺植物天然产物研究所,福州350002

植物精油是一类植物次生代谢物质,分子量较小,可随水蒸气蒸出,并具有一定挥发性的油状液体的总称,是植物特有芳香物质的提取物。植物精油来源丰富,可来源于植物的花、叶、根、树皮、果实、种子等植物的各个部位。植物精油具有极高的应用价值,被广泛应用于医疗保健、食品工业、生态旅游、果蔬保鲜、害虫防治和日化产品等领域[1,2]。

植物精油具有抗菌消炎、抗癌抑瘤、抗氧化、延缓衰老、抗病毒、防治心血管疾病等多种生物活性,国内外对其生物活性的研究日趋活跃。国外对植物精油生物活性的研究起步早,已取得一定成果,并逐步深入到作用机理的细胞、分子水平等研究层面。国内植物精油研究主要集中在提取技术、化学成分分析等方面,较少对其生物活性进行研究,植物精油生物活性作用机理方面的研究更为薄弱。近些年,国内对植物精油生物活性的研究虽取得一定成果,但这些成果多集中于抗菌和抗氧化这两方面上,因此在生物活性方面还具有非常广阔的研究空间。阐述植物精油生物活性作用机理,一方面可用于指导国内植物精油生物活性研究,另一方面也可为植物精油的药物开发利用提供理论基础。

1 植物精油的化学成分及作用

植物精油的化学成分极其复杂,且不同植物或不同部位的精油成分也有差异。植物精油的化学成分一般分为萜类化合物、芳香族化合物、脂肪族化合物和含氮含硫化合物四种。其中,萜类化合物是精油中最为常见、含量最多的成分,又可以分为单萜、倍半萜和双萜等;植物精油中常见的萜类化合物有茴香醇(C8H1202)、薄荷酮(C10H180)、金合欢烯(C15H24)、罗勒烯(C10H16)、广藿香酮(C12H16O4)、月桂烯(C10H16)等,这些化合物常见于桉树、薄荷、栀子花、广藿香、月桂等植物精油中。芳香族化合物是植物精油的第二大类化合物,主要是一些酚类、醛类、酮类、酯类、萜源衍生物及苯丙环类衍生物;植物精油中常见的芳香族化合物有百里香酚(C10H14O)、丁香酚(C10H12O2)、柠檬醛(C10H16O)、肉桂醛(C9H8O)、乙酸肉桂酯(C11H12O2)等,这些化合物在百里香、丁香、肉桂等植物精油中常见。脂肪族化合物在植物精油中含量较小,常见有香茅精油中的异戊醛(C5H10O)、缬草精油中的异戊酸(C5HC10O2)、桂花精油中的乙酸乙酯(C4H8O2)等。含氮含硫化合物在辛香料植物中较多,如大蒜精油中的大蒜素(C6H10S3)、洋葱精油中的三硫化合物等。

植物精油的几大类成分具有特殊的生理作用。植物精油中的多种萜类化合物具有抗菌消炎、抗癌抑瘤、抗氧化等作用,其中单萜和倍半萜化合物往往有很强的抗菌作用[3]。百里香醌(thymoquinone)具有很强的抗癌和抗氧化作用;p-百里香素(p-cymene)、β-蒎烯(β-pinene)、长叶烯(longifolene)等都具有一定的抗菌消炎、抗癌抑瘤的作用;而香芹酚(carvacrol)除抗癌效果突出外,还具有一定的镇痛作用[4,5]。植物精油中的芳香族化合物也具有抗菌、抗病毒、抑制肿瘤生长、镇痛麻醉等作用,如反式-肉桂醛(trans-cinnamaldehyde)具有很强的抗菌、抗病毒能力,而丁香酚(eugenol)除具有抗菌作用外,还具有抗氧化、抑制肿瘤、麻醉等作用[6-8]。脂肪族化合物在植物精油中含量少,往往不是其主要活性作用成分;其具有特殊香气,可能对精油整体香气有特殊的贡献。含氮含硫化合物较多存在于辛香料植物中,辛香料精油所具有的特殊生理作用可能与含氮含硫化合物密切相关。

2 植物精油生物活性作用机理

2.1 植物精油抗菌作用机理

许多植物精油对多数动植物源病菌有抑制或灭菌作用,对许多革兰氏阴性和阳性菌均有抑制作用[9]。植物精油对多种人类疾病的病原菌也有抑制作用[10-13],有些精油的抗菌成分还能抑制伤口感染,加速伤口愈合[14]。植物精油的成分和化学结构[15],及外界条件如低温低氧低pH等都会影响其抗菌效果[16]。某些精油或成分及精油与抗生素之间的协同作用或叠加作用也能增强抗菌效果,如香芹酚与其前体p-百里香素、肉桂醛和丁香酚之间、蒿属植物Artemisia iwayomogi精油与苯唑西林之间都存在协同作用或叠加作用[16,17]。此外,不同提取方式也会影响精油抗菌效果,如超临界-CO2萃取法比水蒸气蒸馏法提取的薰衣草精油抗菌效果更强[18]。

植物精油对病菌的影响方式主要有下列几种。一是改变病菌细胞形态结构,如细胞膜、细胞壁、细胞质和细胞器等的结构,造成细胞不可逆的损伤[13,19-22],最终导致病菌细胞瓦解而死亡。二是改变菌丝体形态结构诱发菌丝体溶解而导致病菌的死亡[20-22]。三是降低或抑制分生孢子的产生和萌发,或破坏其受精作用[13,20,22],降低或阻断病菌后代继续为害的可能。丁香、百里香、甜橙外果皮、山香(Hyptis suaveolens L.)、牛至、紫苏、天竺葵、薰衣草、孔雀草、迷迭香、月桂、小茴香、紫玉兰等植物精油,具有改变相应病菌细胞或菌丝体的形态结构或作用于分生孢子,因此都具有一定的抗菌效果[10,11,13,19-24]。植物精油中的芳樟醇(linalool)、反式-肉桂醛、柠檬醛(citral)、香芹酚、百里香酚(thymol)、γ-松油烯(γ-terpinene)、p-百里香素、α-蒎烯(α-pinene)、乙酸龙脑酯(bornyl acetate)、樟脑(camphor)、1,8-桉油素(1,8-cineole)、β-蒎烯、丁香酚、侧柏酮(thujone)、香叶醇(geraniol)、紫苏醛(perillaldehyde)等成分具有一定的抗菌能力[16],上述多种植物精油具有抗菌作用可能与其富含这些成分中的一种或多种有关。植物精油及成分引起病菌死亡具体作用途径有所不同。Zhu等[25]认为植物精油抗菌成分是一些天然酚类和萜类物质,因此植物精油抗菌作用方式与其他酚类物质相似;酚类物质不仅作用于细胞壁、细胞膜从而改变细胞渗透性并释放出胞内物质如核糖、谷氨酸钠等,而且还能干扰膜的正常生理功能如电子转移、营养吸收、蛋白质及核酸合成和酶活性等;植物精油抗菌作用机理可能是这些作用中的一种或多种。Burt[16]则认为许多精油及其成分具有的疏水性,能够分割病菌细胞膜和线粒体上的脂类,使细胞渗透性增强,导致细胞内含物外渗,最终导致病菌细胞死亡。生物膜能显著提高病菌抵御抗菌药物的能力,而丁香精油的主成分丁香酚会影响病菌细胞生物膜的形成,降低病菌的抵御能力;丁香酚还能抑制白色念珠菌丝状物质的生长,影响菌丝体的完整,从而发挥抗菌作用[11]。研究表明,百里香精油具有与抗生素相似的功能,可导致细菌外膜蛋白质结构发生显著改变,这种改变可能会影响细菌的侵入能力,从而发挥抗菌作用[23]。Chung等[17]认为蒿属植物Artemisia iwayomogi精油的抗菌机制可能与DNA裂解有关。由于植物精油成分众多,且不同成分抗菌机理可能不尽相同,因此植物精油抗菌机制通常不是单一的作用方式,而是多点作用机制[16,24]。目前植物精油抗菌作用机理研究主要集中在对病菌细胞超微结构、菌丝体形态结构和孢子等变化的观察层面,而较少研究分子水平如蛋白质、核酸的抗菌机理,而这些方面应是今后植物精油抗菌作用机理研究的重点。

2.2 植物精油抗癌、抑制肿瘤细胞生长作用机理

许多植物精油对多种肿瘤细胞和癌细胞有抑制作用,能抗人体子宫内膜癌[26]、口鼻咽癌[22,27]、肺癌[28]、结肠癌[28,29]、胃癌[30]和白血病[31-34]等癌细胞和肿瘤细胞。精油抗癌的有效成分主要有丁香酚、香叶醇、香芹酚、百里香醌、β-蒎烯、长叶烯、龙脑(borneol)等[4,5,7,29,34,35]。某些植物精油中的片段也具有抗癌抑瘤功效;如从地中海柏木精油中分离纯化得到的CHCl3片段对人子宫颈癌细胞系HeLa细胞具有很强的细胞毒性[36]。植物精油还能有效地清除一些可能致癌的物质,如亚硝酸盐[37],可在一定程度上预防癌症。

植物精油抗癌抑瘤作用通常是通过诱导细胞凋亡而实现的。柠檬香茅精油能导致白血病细胞系HL-60细胞的表面突起丧失、染色体凝聚和线粒体脊消失,并使Sarcoma-180肉瘤的细胞核凝缩和破碎,这些都是细胞凋亡的典型现象[33]。植物精油诱导癌细胞和肿瘤细胞凋亡具有多条作用途径。柠檬香茅精油及其倍半萜物质iso-臭根醇(iso-intermedeol)诱导HL-60细胞凋亡一是通过线粒体途径:最初6h内ROS激增和线粒体膜电位变化可能造成DNA碎裂、细胞凋亡体形成和sub-G0期DNA亚二倍体增加,ROS激增诱导细胞色素c(cytochrome c)从线粒体内膜上脱离并逐步清除ROS,细胞色素c在细胞液内的增加又活化caspase-9(半胱天冬酶-9),而caspase-8则被激活的上游端点死亡受体TNFR1、DR4(TRAIL-R1)活化,caspase-8和caspase-9的异常表达继而活化下游死亡执行蛋白 caspase-3,caspase-3能分裂具有修复受损DNA功能的PARP1 (ADP核糖聚合酶 1,poly(ADP-ribose)polymerase),使受损DNA无法修复,这可能是导致细胞最终凋亡的重要因素;此外该精油还能使促细胞凋亡蛋白Bax从细胞液迁移入线粒体,而抗细胞凋亡蛋白Bcl-2的含量保持不变,Bax/Bcl-2比例的改变也可能作用于细胞凋亡;二是NF-κB途径,该精油及iso-臭根醇导致转录因子NF-κB与其抑制调控蛋白络合,使细胞核内NF-κB减少,从而影响相关基因的转录,进而导致细胞凋亡[31]。Cha等[27]研究表明,蒿属植物Artemisia iwayomogi精油诱导口腔癌细胞系KB细胞凋亡过程中的线粒体、caspase途径严格受MAPK(促分裂原活化蛋白激酶)途径调控; MAPK途径也参与百里香醌诱导结肠癌细胞凋亡过程[29]。这些研究结果表明植物精油抗癌抑瘤是一个相当复杂的过程,其作用机理仍未研究透彻。

同种精油成分诱导不同癌细胞凋亡的作用途径不同。Park等[32]指出丁香酚能导致白血病细胞系RBL-2H3细胞凋亡,并观察到肿瘤抑制因子p53通过ser15位置的磷酸化移向线粒体内,且这种迁移先于细胞色素c的释放和线粒体膜电位的降低,磷酸化后的Phospho-ser 15-p53还能与抗细胞凋亡蛋白Bcl-2、Bcl-XL在线粒体内互作;说明丁香酚是通过Phospho-ser 15-p53移向线粒体并引起一系列的连锁反应而导致细胞凋亡。而Yoo等[34]则认为丁香酚抗前髓细胞性白血病的机制可能是:丁香酚通过消耗细胞内的巯基引起氧化还原反应失衡产生ROS,ROS导致线粒体跨膜电位丧失引起线粒体渗透性改变,从而使细胞色素c释放到细胞液中激活Caspase-9和Caspase-3的级联反应,这两者被激活后可能诱导Bax迁入线粒体,而线粒体内Bcl-2减少;这些物质的相应变化及互作共同导致癌细胞的凋亡。

2.3 植物精油抗氧化、延缓衰老作用机理

许多植物精油具有抗氧化作用,能减少自由基等物质对机体的伤害,有助延缓衰老。植物精油抗氧化作用还可与其他生物活性互作,共同保护机体延缓衰老。其清除自由基作用可能会减少细胞凋亡和DNA损伤,并能抗动脉粥样硬化[38,39]。川芎植物(Cnidium officinale和Ligusticum chuanxiong)精油能抑制紫外线(UV-B)伤害造成的受损DNA的迁移,并在细胞凋亡调节基因的控制下,减少p21蛋白的表达,增加细胞周期蛋白D1(cyclin D1)的表达水平;川芎精油抑制UV-B引起的DNA损伤和细胞凋亡作用,可能与其强清除自由基能力有关。植物精油中具有较强抗氧化能力的成分主要有:乙酸肉桂酯(cinnamyl acetate)、肉桂醛(cinnamaldehyde)、香茅醇(citronellol)、香茅醛(citronellal)、百里香酚、香芹酚、β-月桂烯(β-myrcene)和p-百里香素等[40-43]。

植物精油抗氧化作用主要通过以下途径:一是直接清除DPPH、H2O2、羟基离子、超氧化物、超氧阴离子等一系列自由基[42,44-50]。二是减少脂质过氧化,增加还原能力;如抑制脂氧化酶活性、抗亚油酸氧化、螯合金属离子和还原铁离子[49,51-53]等。一种植物精油抗氧化作用可以是上述这些途径中的一种或多种。Pituranthos chloranthus植物精油可阻止DNA质粒中H2O2光解产生自由基诱导的破坏[46]。蓍(Achillea millefolium subsp.millefolium Afan)的精油具有很强的清除DPPH能力,并在Fe3+-EDTA -H2O2脱氧核糖体系中表现出清除羟自由基的能力;同时还能抑制大鼠肝脏匀浆中非酶类的脂质过氧化作用[54]。

2.4 植物精油防治心血管疾病作用机理

某些植物精油能调节血压、血糖、血脂和胆固醇,缩短凝血时间,抗动脉粥样硬化[39,55,56],对心血管疾病有一定的防治作用。精神紧张对心血管有害,会造成冠状动脉循环减弱;而薰衣草芳香疗法,能降低精神紧张,减少血清皮质醇,增加冠状动脉血流储备[56],从而保护心血管系统。

植物精油可通过不同途径降低血压。薰衣草精油通过嗅觉途径进入中枢神经系统而降低血压[57],但其进入中枢神经系统后是直接作用于心血管调节中枢或是通过间接途径调节血压仍未清楚。蔷薇木属植物Aniba canelilla茎皮精油降低血压是通过松弛血管,而非消除交感神经紧张[58]。萝摩科植物Periploca laevigata根皮精油能有效抑制ACE(Angiotensin I-converting enzyme,血管紧缩素Ⅰ转化酶)活性而降低血压[59],ACE可通过把无活性angiotensin-I(血管紧缩素-Ⅰ)转化成有收缩血管作用的angiotensin-II和降低有舒张血管作用的缓激肽(bradykinin)而导致血压升高。植物精油抗动脉粥样硬化作用与其抗氧化性有关。Chung等[39]研究表明,苦艾精油抗氧化性可通过降低氧化固醇而改善肝脏脂类代谢;苦艾精油和维生素E能共同抗动脉粥样硬化,其可能作用方式是抑制人低密度脂蛋白(LDL)的氧化并上调LDL受体。茴香精油及主成分茴香脑(anethole)抗血栓作用可能通过抑制血小板凝聚、防止血块凝缩和舒张血管而实现[60]。研究表明,桃金娘精油是通过增强糖酵解、增加糖原生成和减少糖原分解而降低血糖,而与胰岛素效应无关;桃金娘精油甚至还会导致低血糖症,这主要是因为肠对葡萄糖吸收减少;桃金娘精油可能是一种α-糖苷酶抑制剂,只对由四氧嘧啶诱导的糖尿病有降血糖功效[55]。

2.5 植物精油抗病毒和消炎作用机理

植物精油对疱疹病毒(HSV)、流感病毒和肝炎病毒有一定抗性[6,61-63]。植物精油的单萜成分具有抗HSV病毒效果[61],藜蒿精油与脂质体的混合物可增加抗病毒效果[62]。植物精油抗病毒一般只能作用于吸附前,而对吸附后的病毒无效[64];精油(茴香、姜、百里香、牛膝草、洋甘菊、檀香精油)可能与吸附前的病毒包膜互作而发挥作用[65]。但反式-肉桂醛能抑制转录后病毒蛋白的合成而抗病毒[6],说明植物精油抗病毒有多种作用途径。

许多植物精油被用于治疗皮肤炎症、过敏性胸膜炎、水肿等炎症[66-68]。植物精油中的反式-桂皮醛、柠檬醛、龙脑、乙酸龙脑酯、丁香酚、E-橙花叔醇(E-nerolidol)、乙酸肉桂酯、芳樟醇、乙酸芳樟醇、α-蛇麻烯和丁香烯(caryophyllene)及其氧化物等都具有较强的消炎消肿功效[37,67,69-71]。

植物精油消炎的机理主要是通过阻滞NF-κB途经顺畅而实现。正常状态下NF-κB与IκB结合成无活性的复合体存在于细胞液中,而受激后IκB会被磷酸化和降解,从而释放NF-κB并移向核内,NF-κB在核内进行一系列的活动引发炎症;NF-κB既能决定促炎症因子如肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)、白介素-6(IL-6)的表达,又能决定调控发炎进程的诱生型一氧化氮合酶(iNOS)和环加氧酶-2(COX-2)的活性,间接影响这两种酶所调控的促炎症因子一氧化氮(NO)和前列腺素E2(PGE2)[72]。NF-κB的组成物质p50和p65亚基移向核内需IκB-α的磷酸化和降解,而滨艾(Artemisia fukudo)精油能保护IκB-α不被磷酸化和降解,一方面直接阻滞NF-κB释放,另一方面间接导致核内因亚基不足而引起NF-κB合成受阻,从而抑制了促炎症因子的表达和相关调控酶的活性,最终达到消炎效果;此外,该精油还能抑制MAPK途经中ERK、JNK和p38的活性,而MAPK途经可能也参与调控NF-κB活性,说明该精油具有多种抗炎作用途径[72]。水翁(Cleistocalyx operculatus)精油抗炎作用的发挥可能是通过抑制TNF-α、IL-1β及其mRNA的表达和阻滞NF-κB、p65的核迁移[73]。植物精油具有多种消炎途径,可能是因为所含成分具有不同的消炎作用途径。柠檬醛可阻止IκB-α降解、抑制iNOS和NO产生、阻滞p50的核迁移[67];α-蛇麻烯和反式-丁香烯都能减少PGE2、iNOS和COX-2的表达,但α-蛇麻烯能同时抑制TNF-α和IL-1β的产生,而反式-丁香烯只能减少TNF-α的产生[70]。

2.6 植物精油其他生物活性作用机理

白芷挥发油具有镇痛、镇静作用[74],调整体内单胺类神经递质含量是其镇痛机理之一[75]。芳樟醇镇痛和抗痛觉敏感归因于胆碱能系统、阿片系统和多巴胺能系统的兴奋,局部麻醉和阻断N-甲基-D-天冬氨酸受体(NMDA)三方面的作用[37]。Peana等[37]研究表明减少NO产生或释放,是芳樟醇镇痛分子机理的主导或部分原因,这一过程可能还有胆碱能系统和谷氨酸能系统的参与。Batista等[76]研究发现,芳樟醇可以通过抑制促炎症因子TNF-α和IL-1β而减弱炎症引起的疼痛,此外芳樟醇还可以通过钝化神经系统超敏反应而镇痛。当归精油具有治疗痛经的作用,能通过降低子宫平滑肌上PGF2α和PGE2的含量及升高体内孕激素水平等途径缓解痛经症状[77]。过江藤属植物Lippia dulcis Trev.精油具有解痉作用,这可能与其具有抗组胺能活性和抗胆碱能活性相关[78]。

3 问题与展望

近些年来,植物精油生物活性作用机理研究已取得一定成果,但仍存在一些问题有待突破。一、植物精油是一类天然混合物,其成分众多、结构复杂,因此常将植物精油作为整体进行研究,而较少进行有效成分的筛选及成分间相互作用的研究,因此较不清楚具体是哪种或哪几种成分发挥作用,影响了其作用机理的进一步阐明。二、植物精油作用机理探索较多停留在药效及细胞水平的观察层面,而对其分子机理的探究较少,限制其机理的透彻阐明。三、目前植物精油生物活性研究多集中在单一精油上,而对多种精油混合或精油间协同作用研究甚少,可作为今后研究突破之一。四、植物精油作用机理研究多建立在体外或动物体试验基础上,临床及生产应用安全性方面的研究薄弱。五、除上述几种生物活性外,植物精油还具有发汗解热、安神镇静、祛痰止咳、平喘、祛风健胃和抗抑郁[79]等作用,值得进一步研究探索。

1 Wang GY(王广要),et al.Advances in the research and the development of plant essential oils.Food Sci Technology(食品科技),2006,31:11-14.

2 Zhu XW(竺锡武),et al.Study Progress of Essential Oil from Plants.Hunan Agric Sci(湖南农业科学),2009,(8): 86-89,92.

3 Vaio CD,et al.Essential oils content and antioxidant properties of peel ethanol extract in 18 lemon cultivars.Sci Hortic-Amsterdam,2010,126:50-55.

4 Arunasree KM.Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line,MDA-MB 231.Phytomedicine,2010,17:581-588.

5 Bourgou S,et al.Bioactivities of black cumin essential oil and its main terpenes from Tunisia.S Afr J Bot,2010,76: 210-216.

6 Hayashi K,et al.Inhibitory effect of cinnamaldehyde,derived from Cinnamomi cortex,on the growth of influenza A/PR/8 virus in vitro and in vivo.Antivir Res,2007,74:1-8.

7 Slameňová D,et al.Investigation of anti-oxidative,cytotoxic,DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2,Caco-2 and VH10 cell lines.Mutat Res-Gen Tox En,2009,667:46-52.

8 Divya KH,Varadaraj MC.Response surface plots for the behavioral pattern of Yersinia enterocolitica in chocolate milk as affected by trans-cinnamaldehyde,a spice essential oil constituent.Food Bioprocess Tech,2009.

9 Basile A,et al.Antibacterial and antioxidant activities in Sideritis italica(Miller)Greuter et Burdet essential oils.J Ethnopharmacol,2006,107:240-248.

10 Bajpai VK,et al.Antioxidant and antidermatophytic activities of essential oil and extracts of Magnolia liliflora Desr..Food Chem Toxicol,2009,47:2606-2612.

11 He M,et al.In vitro activity of eugenol against Candida albicans biofilms.Mycopathologia,2007,163:137-143.

12 Preuss HG,et al.Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gramnegative bacteria.Mol Cell Biochem,2005,272:29-34.

13 Rasooli I,Owlia P.Chemoprevention by thyme oils of Aspergillus parasiticus growth and aflatoxin production.Phytochemistry,2005,66:2851-2856.

14 Okoli C,et al.Potentials of leaves of Aspilia africana(Compositae)in wound care:an experimental evaluation.BMC Complement Altern Med,2007,7:382-388.

15 Feng W(冯武).The Study of Control and mechanism of action on postharvest diseases of fruit and vegetables by essential Oils.Hang Zhou:Zhejiang University(浙江大学),PhD.2006.

16 Burt S.Essential oils:their antibacterial properties and potential applications in foods-a review.In J Food Microbiol,2004,94:223-253.

17 Chung EY,et al.Antibacterial effects of vulgarone B from Artemisia iwayomogi alone and in combination with oxacillin. Arch Pharm Res,2009,32:1711-1719.

18 Chen WQ(陈蔚青),Jin JZ(金建忠).Antim icrobial activity and GC-M S analysis of essential oil from lavender extracted by supercritical CO2extraction and hydrodistillation.China J Chin Mater Med(中国中药杂志),2008,33:1821-1824.

19 Inouye S,et al.The vapor activity of oregano,perilla,tea tree,lavender,clove,and geranium oils against a Trichophyton mentagrophytes in a closed box.J Infect Chemother,2006,12:349-354.

20 Sharma N,Tripathi A.Fungitoxicity of the essential oil of Citrus sinensis on post-harvest pathogens.World J Microb Biot,2006,22:587-593.

21 Soylu EM,et al.Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans.Mycopathologia,2006,161:119-128.

22 Tripathi A,et al.In vitro efficacy of Hyptis suaveolens L. (Poit.)essential oil on growth and morphogenesis of Fusarium oxysporum f.sp.gladioli(Massey)Snyder&Hansen. World J Microb Biot,2009,25:503-512.

23 Horváth G,et al.Effect of Thyme(Thymus vulgaris L.)essential oil and its main constituents on the outer membrane protein composition of Erwinia Strains studied with microfluid chip technology.Chromatographia,2009,70:1645-1650.

24 Romagnoli C,et al.Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L..Protoplasma,2005,225:57-65.

25 Zhu S,et al.Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum.J Ethnopharmacol,2005,96:151-158.

26 Medina-Holguín AL,et al.Chemotypic variation of essential oils in the medicinal plant,Anemopsis californica.Phytochemistry,2008,69:919-927.

27 Cha JD,et al.MAPK activation is necessary to the apoptotic death of KB cells induced by the essential oil isolated from Artemisia iwayomogi.J Ethnopharmacol,2009,123:308-314.

28 Sylvestre M,et al.Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L.from Guadeloupe.J Ethnopharmacol,2006,103:99-102.

29 El-Najjar N,et al.Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling.Apoptosis,2010,15:183-195.

30 Li R,et al.Extraction of essential oils from garlic(Allium sativum)using ligarine as solvent and its immunity activity in gastric cancer rat.Med Chem Res,2009.

31 Kumar A,et al.An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells.Chem-Biol Interact,2008,171: 332-347.

32 Park BS,et al.Phospho-ser 15-p53 translocates into mitochondria and interacts with Bcl-2 and Bcl-xL in eugenol-induced apoptosis.Apoptosis,2005,10:193-200.

33 Sharma PR,et al.Anticancer activity of an essential oil from Cymbopogon flexuosus.Chem-Biol Interact,2009,179:160-168.

34 Yoo CB,et al.Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett,2005,225:41-52.

35 Carnesecchi S,et al.Geraniol,a component of plant essential oils,modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts.Cancer Lett,2004,215:53-59.

36 Ibrahim NA,et al.Constituents and biological activity of the chloroform extract and essential oil of Cupressus sempervirens.Chem Nat Compd+,2009,45:309-313.

37 Peana AT,et al.(-)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound.Life Sci,2006,78:719-723.

38 Jeong JB,et al.Antioxidant activity in essential oils of Cnidium officinale makino and Ligusticum chuanxiong hort and their inhibitory effects on DNA damage and apoptosis induced by ultraviolet B in mammalian cell.Cancer Epidemiology,2009,33:41-46.

39 Chung MJ,et al.The effect of essential oils of dietary wormwood(Artemisia princeps),with and without added vitamin E,on oxidative stress and some genes involved in cholesterol metabolism.Food Chem Toxicol,2007,45:1400-1409.

40 Singh HP,et al.In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity.Food Chem Toxicol,2010,48:1040-1044.

41 Chizzola R,et al.Antioxidative properties of thymus vulgaris leaves:comparison of different extracts and essential oil chemotypes.J Agr Food Chem,2008,56:6897-6904.

42 Singh HP,et al.Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia.Food Chem,2009,114:642-645.

43 Lin KH,et al.Major chemotypes and antioxidative activity of the leaf essential oils of Cinnamomum osmophloeum Kaneh. from a clonal orchard.Food Chem,2007,105:133-139.

44 Gardeli C,et al.Essential oil composition of Pistacia lentiscus L.and Myrtus communis L.:Evaluation of antioxidant capacity of methanolic extracts.Food Chem,2008,107:1120-1130.

45 Yang Y,et al.Cytotoxic,apoptotic and antioxidant activity of the essential oil of Amomum tsao-ko.Bioresource Technol,2010,101:4205-4211.

46 Neffati A,et al.Antigenotoxic and antioxidant activities of Pituranthos chloranthus essential oils.Environ Toxicol Phar,2009,27:187-194.

47 Dordevic S,et al.Antimicrobial,anti-inflammatory,anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil.J Ethnopharmacol,2007,109:458-463.

48 Al-Reza SM,et al.Antioxidant and antilisterial effect of seed essential oil and organic extracts from Zizyphus jujuba.Food Chem Toxicol,2009,47:2374-2380.

49 Ricci D,et al.Chemical composition,antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae).J Ethnopharmacol,2005,98:195-200.

50 Hwang JK,et al.Antioxidant activity of Litsea cubeba.Fitoterapia,2005,76:648-686.

51 Wannes WA,et al.Antioxidant activities of the essential oils and methanol extracts from myrtle(Myrtus communis var. italica L.)leaf,stem and flower.Food Chem Toxicol,2010,48:1362-1370.

52 Joshi SC,et al.Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species.Food Chem Toxicol,2010,48:37-40.

53 Gourine N,et al.Seasonal variation of chemical composition and antioxidant activity of essential oil from Pistacia atlantica Desf.leaves.J Am Oil Chem Soc,2010,87:157-166.

54 Candan F,et al.Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp.millefolium Afan.(Asteraceae).J Ethnopharmacol,2003,87:215-220.

55 Aylin SD,et al.Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits.J Ethnopharmacol,2007,110:498-503.

56 Shiina Y,et al.Relaxation effects of lavender aromatherapy improve coronary flow velocity reserve in healthy men evaluated by transthoracic Doppler echocardiography.Int J Cardiol,2008,129:193-197.

57 Wang L(汪莉),et al.Effects on SD rat's blood pressure through olfactory medication of lavender oil.Acta Univ Med Anhui(安徽医科大学学报),2009,44:221-224.

58 Lahlou S,et al.Cardiovascular effects of the essential oil of Aniba canelilla bark in normotensive rats.J Cardiovasc Pharm,2005,46:412-421.

59 Hajji M,et al.Chemical composition,angiotensin I-converting enzyme(ACE)inhibitory,antioxidant and antimicrobial activities of the essential oil from Periploca laevigata root barks.Food Chem,2010,121:724-731.

60 Tognolini M,et al.Protective effect of Foeniculum vulgare essential oil and anethole in an experimental model of thrombosis.Pharm Res,2007,56:254-260.

61 Astani A,et al.Antiviral Activity of Monoterpene Components of Essential Oils Against Herpes Simplex Virus.Antivir Res, 2009,82:A46.

62 Sinico C,et al.Liposomal incorporation of Artemisia arborescens L.essential oil and in vitro antiviral activity.Eur J Pharm Biopharm,2005,59:161-168.

63 Giraud-Robert AM.The role of aromatherapy in the treatment of viral hepatitis.International J Aromatherapy,2005,15: 183-192.

64 Schnitzler P,et al.Melissa officinalis oil affects infectivity of enveloped herpesviruses.Phytomedicine,2008,15:734-740.

65 Koch C,et al.Inhibitory effect of essential oils against herpes simplex virus type 2.Phytomedicine,2008,15:71-78.

66 Al-Reza SM,et al.Anti-inflammatory activity of seed essential oil from Zizyphus jujuba.Food Chem Toxicol,2010,48: 639-643.

67 Lin CT,et al.Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata.Bioresource Technol,2008,99:8783-8787.

68 Passos GF,et al.Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.J Ethnopharmacol,2007,110:323-333.

69 Peana AT,et al.Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils.Phytomedicine,2002,9:721-726.

70 Fernandes ES,et al.Anti-inflammatory effects of compounds alpha-humulene and(-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea.Eur J Pharmacol,2007,569:228-236.

71 Tung YT,et al.Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon(Cinnamomum osmophloeum)twigs.Bioresource Technol,2008,99: 3908-3913.

72 Yoon WJ,et al.Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages.Food Chem Toxicol,2010,48:1222-1229.

73 Dung NT,et al.Anti-inflammatory effects of essential oil isolated from the buds of Cleistocalyx operculatus(Roxb.)Merr and Perry.Food Chem Toxicol,2009,47:449-453.

74 Nie H(聂红),et al.Studies on Analgesic and Sedative Effects and Physical Dependence of Essential Oil of Radix Angelicae Dahuricae.Tradit Chin Drug Res Clinical Pharm (中药新药与临床药理),2002,13:221-223.

75 Nie H(聂红),et al.Mechanism of Essential Oil of Radix Angelicae dahuricae(EOAD)on neural transm itter of pain m odel of rats.Pharm Clinics Chin Mater Med(中药药理与临床),2002,18:11-14. Marine Biology,1982,67:225-230.

6 Ballesteros E,et al.Biological activity of extracts from some Mediterranean macrophytes.Botanica Marina,1992,35:481-485.

7 Engel S,et al.Antimicrobial activities of extracts from tropical Atlantic marine plants against marine pathogens and saprophytes.Marine Biology,2006,149:991-1002.

8 Kumar CS,et al.Antibacterial activity of three South Indian seagrasses,Cymodocea serrulata,Halophila ovalis and Zostera capensis.World J Microbiol Biotechnol,2008,24:1989-1992.

9 Bhosale SH,et al.Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas.Marine Biotechnology,2002,4:111-118.

10 Kontiza I,et al.New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa.Tetrahedron,2008,64:1696-1702.

11 Qi SH,et al.Antifeedant,antibacterial,and antilarval compoundsfrom the South China Sea seagrass Enhalus acoroides.Botanica Marina,2008,51:441-447.

12 Jensen PR,et al.Evidence that a new antibiotic flavones glycoside chemically defends the sea grass Thalassia testudinum against Zoosporic fungi.Applied and Environmental Microbiology,1998,64:1490-1496.

13 Rowley DC,et al.Thalassiolins A-C:new marine-derived inhibitors of HIV cDNA integrase.Bioorganic Medicinal Chemistry,2002,10:3619-3625.

14 Sureda A,et al.Antioxidant response of the seagrass Posidonia oceanic when epiphytized by the invasive macroalgae Lophocladia lallemandii.Marine Environmental Research,2008,66:359-363.

15 Khasina EI,et al.Antioxidant activities of a low etherified pectin from the seagrass Zostera marina.Russian Journal of Marine Biology,2003:259-261.

16 Sonina LN,Khotimchenko MY.Effectiveness of Pectin Extracted from the Eelgrass Zostera marina for Alleviating Lead-Induced Liver Injury.Russian Journal of Marine Biology,2007,33:204-206.

17 Regalado EL,et al.Repair of UVB-damaged skin by the antioxidant sulphated flavone glycoside Thalassiolin B isolated from the marine plant Thalassia testudinum Banks ex König. Mar Biotechnol,2009,11:74-80.

18 Kim JH,et al.Antioxidants and inhibitor of matrix metalloproteinase-1 expression from leaves of Zostera marina L.. Archihes of Pharmacal Research,2004,27:177-183.

19 Kontiza I,et al.Cymodienol and cymodiene:new cytotoxic diarylheptanoids from the sea grass Cymodocea nodosa.Tetrahedron Letters,2005,46:2845-2847.

20 Gloaguen V,et al.Structural characterization and cytotoxic properties of an apiose-rich pectic polysaccharide obtained from the cell wall of the marine phanerogam Zostera marina.Journal of Natural Products,2010,3:087-1092.

21 Gavagnin M,et al.Structure and absolute stereochemistry of syphonoside,a unique macrocyclic glycoterpenoid from marine organisms.The Journal of Organic Chemistry,2007,72: 5625-5630.

22 Carbone M,et al.Further syphonosides from the sea hare Syphonota geographica and the sea-grass Halophila stipulacea.Tetrahedron,2008,64:191-196.

23 DellaGreca M,et al.Antialgal ent-labdane diterpenes from Ruppiamaritime.Phytochemistry,2000,55:909-913.

24 Hua KF,et al.Study on the anti-inflammatory activity of methanol extract from seagrass Zostera japonica.Agricultural and Food Chemistry,2006,54:306-311.

25 Gokce G,Haznedaroglu MZ.Evaluation of antidiabetic,antioxidant and vasoprotective effects of Posidonia oceanic extract.Ethnopharmacology,2008,115:122-130.

猜你喜欢
百里香丁香酚精油
黑龙江省4种野生百里香挥发油成分GC-MS分析
板栗花精油提取研究
Primary tumor location and survival in colorectal cancer: A retrospective cohort study
酸橙精油GC-MS分析及其生物活性
响应面优化百里香多糖提取工艺及其抗氧化作用
为自己调香,造一座精油芳香花园
丁香酚吸嗅对MCAO模型鼠神经行为学影响
丁香酚、小檗碱及苦参碱对荔枝霜疫霉的抑制作用
让百里香为中餐效劳
GC法测定蒙药其顺通拉嘎胶囊中丁香酚的含量