尼古丁对内隐记忆与外显记忆的影响*

2018-08-30 02:10林静远林无忌孟迎芳
心理学报 2018年9期
关键词:胆碱尼古丁编码

林静远 林无忌 孟迎芳



尼古丁对内隐记忆与外显记忆的影响*

林静远1,2林无忌1孟迎芳1

(1福建师范大学心理学院, 福州 350117) (2华侨大学旅游学院, 福建 泉州 362021)

胆碱是一种与记忆密切相关的物质, 以往研究主要探讨不同胆碱类药物对外显记忆的影响, 内隐记忆受胆碱影响与外显记忆是否相同仍存在争议。实验1采用词汇判断与词汇再认任务, 比较内隐记忆与外显记忆在拟胆碱药物尼古丁的影响下, 记忆成绩是否发生变化。结果表明, 摄入尼古丁后, 内隐与外显记忆成绩都有一定程度的下降, 但内隐记忆受影响的程度更大。为进一步探讨尼古丁对两种记忆的影响, 实验2分别在编码前与提取前摄入尼古丁, 观察其对两种记忆不同阶段的影响, 并使用ERP技术观察其中受影响的成分。结果表明, 编码前摄入尼古丁使内隐记忆与外显记忆的概念加工都受到影响, 而对知觉加工没有影响。提取前摄入尼古丁则对两种记忆的概念加工与知觉加工都产生影响, 但是对内隐记忆的影响更大。上述结果表明, 拟胆碱物质尼古丁对记忆影响的情况与实验任务较为一致, 而与记忆种类关系较小。对两种记忆的影响不同可能主要源于两种记忆采用不同的实验任务导致, 两者的生理机制有一定程度的重叠。

内隐记忆; 外显记忆; 尼古丁; 加工水平

1 问题提出

记忆是个体对其经验的识记、保持以及再认或回忆。过去经验对当前记忆的影响可以是有意识的, 也可以是无意识的。有意识的记忆称为外显记忆, 相对的, 无意识的记忆则称为内隐记忆。研究者对于这两种记忆之间的关系进行了大量的研究, 许多研究发现, 两种记忆在不同变量的影响下产生不一致的变化, 如加工水平(Alipour, Aerab-Sheybani, & Akhondy, 2012; 唐小庭, 2013)、干扰(孟迎芳, 于海莉, 2012; 林无忌, 孟迎芳, 林静远, 2017)、年龄 (Verneau, van der Kamp, Savelsbergh, & de Looze, 2014; Narme, Peretz, Strub, & Ergis, 2016)等。在认知神经科学的研究上, 也观察到两者的分离(Cabeza & Moscovitch, 2013; Korsnes & Magnussen, 2014)。虽然有大量研究证明内隐记忆与外显记忆在行为结果与神经机制上表现出分离, 但也有研究者认为, 这种分离现象是由于两者使用不同任务导致, 两种记忆实际从属于同一个记忆系统(Roediger & McDermott, 1993)。可见, 内隐记忆与外显记忆的分离现象是由于两种记忆任务不同, 还是两种记忆的生理机制不同仍然存在争议。

在使用不同变量研究各因素对记忆影响的实验中, 药物也是一个常见的变量, 其中胆碱相关药物又常在记忆研究中被使用。有研究发现, 胆碱类药物可以增强对记忆相关脑区的兴奋性输入, 并促进记忆编码(Buccafusco, Letchworth, Bencherif, & Lippiello, 2005; Levin, McClernon, & Rezvani, 2006; Kukolja, Thiel, & Fink, 2009)。关于胆碱如何对记忆产生影响, 主要有两种理论:特异性学说与非特异性学说。特异性学说认为, 记忆突触即胆碱突触, 胆碱神经通路本身参与记忆痕迹的形成。因此, 兴奋或抑制胆碱突触的药物可以直接作用于记忆痕迹形成过程, 从而易化或抑制信息的存储。而非特异性学说则认为, 胆碱系统主要通过影响与觉醒相关的神经, 而间接地影响记忆。引起人体内胆碱水平变化的药物分为拟胆碱药和抗胆碱药, 拟胆碱药能使人体内胆碱水平上升, 而抗胆碱药则具有与拟胆碱药相反的作用。研究发现, 胆碱相关药物的摄入能对记忆产生影响, 主要表现为摄入适量的拟胆碱药物后记忆成绩上升, 而摄入抗胆碱药物后记忆成绩下降(Bentley, Driver, & Dolan, 2009; Dumas et al., 2010; Rosier et al., 1999)。例如, 在Bentley等人(2009)的研究中, 被试在使用拟胆碱药物毒扁豆碱或安慰剂后进行图片再认任务。结果发现在使用拟胆碱药物后, 记忆成绩显著高于安慰剂组。而在Dumas等人(2010)的研究中, 被试在使用抗胆碱药物莨菪碱或安慰剂后进行词汇再认任务, 结果发现相对于安慰剂组, 被试在使用抗胆碱药物后降低了记忆成绩。

虽然有大量关于胆碱对记忆影响的研究, 但是这些研究主要探讨胆碱与外显记忆之间的联系, 对内隐记忆是否产生影响并不明确。有研究发现, 胆碱药物仅能对外显记忆产生影响, 而不影响内隐记忆(Danion et al., 1990; Knopman, 1991; Schifano & Curran, 1994)。Danion等人(1990)使用莨菪碱、三甲丙咪嗪和安定研究抗胆碱药物对内隐记忆与外显记忆的影响, 实验使用词干补笔与自由回忆任务测量内隐记忆与外显记忆。被试分别使用3种药物或安慰剂后进行记忆任务, 结果发现在自由回忆任务中, 使用3种药物的被试外显记忆成绩都低于安慰剂组。而在词干补笔任务中, 4组之间的内隐记忆成绩没有差异。Schifano和Curran (1994)使用氯羟去甲安定与莨菪碱对内隐与外显记忆进行研究, 结果同样发现药物损害了外显记忆, 但是对内隐记忆没有影响。但是, 也有研究认为胆碱药物不仅能对外显记忆产生作用, 同时也能对内隐记忆产生作用。在Bentley, Vuilleumier, Thiel, Driver和Dolan (2003)的研究中发现, 在面孔重复呈现时, 拟胆碱药物毒扁豆碱增强了次级枕叶皮层等区域的激活衰减现象, 而激活衰减现象是内隐记忆在脑成像结果上的表现。

胆碱药物可以影响外显记忆已经较为明确, 但是为何在对内隐记忆上的影响却有不同?我们推测不同结果的原因主要来源于几个方面。首先是实验任务, 在Danion等人(1990)与Schifano和Curran (1994)的研究中, 都使用词干补笔任务对内隐记忆进行测量。而在Bentley等人(2003)的研究中, 则通过比较重复刺激的激活衰减来代表内隐记忆。虽然两种任务都可以代表内隐记忆, 但同一变量对不同内隐记忆任务可能产生不同的影响。例如在提取干扰对内隐记忆的影响中, Lozito和Mulligan (2010)与Prull, Lawless, Marshall和Sherman (2016)使用词干补笔任务研究干扰对内隐记忆的影响时, 发现内隐记忆不受提取阶段干扰的影响, 而林无忌等人(2017)使用词汇判断任务则发现相反的结果。林无忌等人认为, 实验任务不同可能是造成不同结果的原因之一, 由于不同任务所要求的加工过程不同, 因此干扰影响了词汇判断的特定加工过程导致其成绩受到影响。其次, 虽然在Danion等人(1990)的研究中, 3组药物组的内隐记忆成绩与安慰剂组之间没有差异, 但是Danion在文中提到, 在莨菪碱组中发现内隐记忆的成绩与外显记忆成绩具有显著的相关, 而在安慰剂组中则没有这种相关。Danion认为两种记忆成绩在药物处理下呈现出显著相关, 可能说明两种记忆在胆碱药物的影响下有一定的关联, 因此并不能说胆碱对内隐记忆完全没有影响。最后, 实验中样本量较少, 上述实验中的被试量为10~15人, 较少的样本量可能造成统计结果不能反应真实情况。综上所述, 我们推测胆碱可能对内隐记忆产生一定影响。

在拟胆碱药物尼古丁对外显记忆影响的研究还发现, 尼古丁对记忆不同加工水平存在不同影响(Warburton, Skinner, & Martin, 2001; FitzGerald et al., 2008)。Warbuton认为尼古丁之所以对不同加工水平的影响不同, 是由于在对记忆项目进行语义加工时需要进行一定程度的联想。而尼古丁的摄入, 影响了语义加工的联想过程, 进而使记忆成绩发生变化。FitzGerald的研究进一步证实这种推论, 研究中发现由于语义和非语义加工所调用的脑区不同, 胆碱仅影响了语义加工所调用的脑区, 而没有影响非语义加工的脑区。这些研究都证明尼古丁对外显记忆不同加工水平的影响不同, 那么尼古丁对不同加工水平产生不同影响的现象是否会发生在内隐记忆中呢?

以往研究认为, 内隐记忆任务较不容易受到编码阶段加工水平的影响(Brooks, Gardiner, Kaminska, & Beavis, 2001; Rugg et al., 1998; Alipour et al., 2012)。例如, 在Brooks等人(2001)的研究中, 要求被试对名人姓名进行深浅加工, 然后进行内隐记忆与外显记忆测验。结果表明, 只有外显记忆测验结果表现出显著的加工水平效应, 而在内隐记忆中则没有发现。在认知神经方面的研究也发现相似的结果, 在Rugg等人(1998)的研究中发现, 加工水平对于外显记忆中的P600新旧效应影响较大, 但是对内隐记忆的N400新旧效应的影响则较小。内隐记忆不易受加工水平影响的现象与迁移适当加工理论较为符合, 根据该理论, 外显记忆依赖于概念加工, 而深加工是对记忆项目进行意义的判断, 更多地涉及概念层面的加工, 因此经过深加工后的项目能得到更好的外显记忆成绩。内隐记忆则依赖于知觉加工, 无论深浅加工, 记忆项目的知觉表征都被编码处理。但是内隐记忆与深加工水平中的概念加工无关, 经过概念加工的记忆项目并不能使内隐记忆成绩发生变化, 因此深浅加工之间的内隐记忆成绩没有差异。根据上述理论, 内隐记忆依赖于知觉加工, 不涉及概念加工, 而尼古丁对记忆产生的影响主要发生在语义加工所调用的脑区。如果该理论正确, 则可以推论尼古丁对内隐记忆的深浅加工的影响应该一致, 因此我们在实验中设置不同加工水平这一变量, 以进一步探索内隐记忆与外显记忆的关系。

此外, 胆碱对外显记忆不同阶段的影响并不相同(Rogers & Kesner, 2003; Gais & Born, 2004)。从信息加工的角度, 记忆可以分为编码、存储、提取三个阶段。在Rogers和Kesner (2003)与Gais和Born (2004)的研究中都发现, 拟胆碱药物能促进记忆的编码, 但是会损害提取。脑成像研究也发现, 拟胆碱药物使编码阶段的激活程度增强, 而使提取阶段的激活程度降低(Kukolja et al., 2009)。Kukolja认为这主要是由于编码与提取对胆碱水平的需要不同导致, 编码阶段较高的胆碱浓度能使编码过程更好地进行, 而提取则相反。胆碱对外显记忆的不同阶段能产生不同的影响, 那么胆碱对内隐记忆的不同阶段是否也能产生不同的影响呢?孟迎芳和郭春彦(2007, 2009)的研究中发现, 内隐记忆与外显记忆在编码与提取阶段都存在非对称性, 例如, 编码阶段的干扰影响外显记忆但是对内隐记忆没有影响, 而提取阶段的干扰影响内隐记忆但对外显记忆没有影响。那么这种非对称性也可能存在于胆碱对两种记忆的影响中, 因此在探讨胆碱对两种记忆的影响时, 有必要从记忆加工的不同阶段进行考察。

尼古丁与毒扁豆碱等药物同属于胆碱类药物中的拟胆碱药物, 它与其他拟胆碱药物一样能使人体内胆碱水平上升(抗胆碱药物作用相反)。因此在本研究中, 我们使用拟胆碱药物尼古丁, 检验两种记忆在药物影响下是否产生不同的变化。另外, 有研究者认为, 词干补笔、范例产生等产生式内隐记忆任务更容易混入外显记忆成分(MacLeod, 2008; Sheldon & Moscovitch, 2010), 因此本研究使用词汇判断任务测量内隐记忆, 并使用词汇再认任务测量外显记忆。在实验2中, 分别在编码阶段与提取阶段摄入尼古丁, 观察尼古丁对两种记忆在不同阶段的影响是否不同。通过ERP技术可以观察到与认知加工有关的神经层面的变化, 也由于ERP数据较为敏感, 可以发现行为结果不易观察到的细微变化。因此我们在实验2同时使用ERP技术, 研究记忆过程中受胆碱影响情况的神经机制。

在关于记忆的ERP研究中, N400新旧效应与P600新旧效应常被用作代表内隐记忆与外显记忆的脑电成分。N400新旧效应是在刺激呈现后300~500 ms时间段, 旧刺激引起的平均波幅减去新刺激引起的平均波幅所得到的差异波。当内隐记忆受到影响后, 表现出启动量下降并伴随N400新旧效应消失, 即新旧刺激之间的波幅差异减小。而P600新旧效应为在刺激呈现后500~800ms时间段, 旧刺激引起的平均波幅减去新刺激引起的平均波幅得到的差异波。当外显记忆受到影响后, 将表现出记忆成绩下降并伴随P600新旧效应消失(唐小庭, 2013; 孟迎芳, 郭春彦, 2009)。因此在本研究中, 将重点分析这两个ERP成分是否受到胆碱影响。

2 实验1:尼古丁对内隐记忆与外显记忆的影响

实验1采用词汇判断与词汇再认任务, 比较内隐记忆与外显记忆在有无尼古丁的条件下, 记忆成绩是否有所不同。每位被试都参与尼古丁条件与安慰剂条件, 两种条件分别在两天进行实验。为保证实验结果的稳定性与有效性, 我们在两次实验前都加入与正式实验流程相同的基线实验作为前测, 通过观察前后测与实验条件之间的交互作用, 来分析实验条件对记忆成绩造成的影响。如果尼古丁能对内隐记忆与外显记忆产生影响, 那么尼古丁组的前后测之间的变化趋势可能与安慰剂组的前后测变化趋势不同。

2.1 方法

2.1.1 被试

共32名被试(男性27人, 女性5人), 平均年龄27.1岁。右利手, 视力或矫正视力正常, 身体健康。均自愿参与实验, 实验结束后付与被试一定报酬。2名被试因操作错误而被剔除, 最终30名被试数据进入分析。

2.1.2 材料

低频双字词720个, 选自北京语言学院语言教学研究所编著的《现代汉语频率词典》(1986), 词频为2.3~12.2/百万, 平均词频为3.654/百万。将双字词随机分为24组, 每组30个词。

将24组词随机分到4个测试组中:安慰剂前测、安慰剂后测、尼古丁前测、尼古丁后测, 每个测试组都包含内隐记忆任务与外显记忆任务, 两个记忆任务都各自包含深浅加工, 每个测试组中6组词, 1组为内隐记忆学习阶段的深加工词, 以白色字体颜色呈现; 1组为内隐记忆学习阶段的浅加工词, 一半红色字体呈现, 一半蓝色呈现; 1组作为外显记忆学习阶段的深加工词; 1组作为外显记忆学习阶段的浅加工词; 1组为内隐记忆在测验阶段的新词; 1组为外显记忆在测验阶段的新词。在学习阶段, 内隐记忆与外显记忆深加工词混合呈现, 浅加工词混合呈现。在测验阶段, 外显记忆深、浅加工与新词混合呈现, 内隐记忆深、浅加工与新词混合呈现, 测验阶段字体颜色全部为白色。通过将另外选取的低频双字词前后两个字拆开, 随机组合形成假词, 去除音或义上可能存在的组合, 得到120个假词, 分成4组, 分别在4个实验中的内隐测验阶段与深加工、浅加工、新词混合呈现。所有双字词均为60号黑体。

2.1.3 尼古丁设备

SMOK®电子烟, 电压设定为4 V, halo®烟油, 尼古丁组使用含尼古丁12 mg/ml的烟油, 安慰剂使用含尼古丁0 mg/ml的烟油, 两者在味道与外形上一致。

2.1.4 烟碱依赖量表

本研究使用Fagerstrom尼古丁依赖测试问卷(Fagerstrom Test of Nicotine Dependence Questionnaire, FTND)筛选被试, 问卷共有六个条目。最高分为10分, 最低为0分, 分数越高表示被试尼古丁依赖程度越高。依赖程度根据得分划分五个水平:很低(0~2分), 低(3~4分), 中等(5分), 高(6~7分), 很高(8~10分)。黄晶晶等人对量表在中国地区进行过考究(黄晶晶, 2008), 量表的Cronbach’s α系数达到0.704, 各项目之间相关系数平均0.36, 各项目与总分之间相关系数为0.461~0.819。在效度方面, 量表条目的KMO值达到0.803, 各条目的因子载荷值较高, 量表只提取一个公因子, 可以解释总方差的43.721%, 有较好的结构效度。本研究的被试选取尼古丁依赖程度为低或很低, 即问卷得分0~4分, 平均分1.8。

2.1.5 实验程序

采用Presentation 0.71软件编制实验程序。被试在隔音室内完成个别施测, 显示器背景为黑色, 距离被试80 cm。被试在实验前2小时内不能使用含有尼古丁的物品。

实验分两天进行, 一天进行尼古丁条件, 一天进行安慰剂条件, 每位被试都参与两次实验, 两种条件的顺序在被试间平衡, 被试不知道有一次是安慰剂, 每次实验包括以下11个阶段:

(1)基线安慰剂摄入:使用含尼古丁0 mg/ml的烟油0.1 ml。

(2)学习阶段(前测):分组呈现深加工和浅加工各60个双字词。要求被试对深加工词进行主观愉快度判断, 愉快按F键, 不愉快按J键; 对浅加工词进行颜色判断, 红色按F键, 蓝色按J键。每个词呈现时间为500 ms, 刺激间隔(ISI)为1400~ 1800 ms。

(3)休息阶段:休息10分钟。

(4)内隐测验阶段(前测):30个深加工词、30个浅加工词、30个新词与30个假词混合随机呈现, 要求被试进行真/假词判断, 真词按F键, 假词按J键。当被试按键后词汇消失, 刺激间间隔(ISI)为1400~ 1800 ms。

(5)外显测验阶段(前测):30个深加工词、30个浅加工词与30个新词混合随机呈现, 要求被试进行新/旧词判断, 新词按F键, 旧词按J键。当被试按键后词汇消失, 刺激间间隔(ISI)为1400~ 1800 ms。

(6)尼古丁摄入:在尼古丁条件下, 使用含尼古丁12 mg/ml的烟油0.1 ml; 在安慰剂条件下, 使用含尼古丁0 mg/ml的烟油0.1 ml。

(7)休息阶段:休息10分钟。

(8)学习阶段(后测):流程同前测的学习阶段。

(9)休息阶段:休息10分钟。

(10)内隐测验阶段(后测):流程同前测的内隐测验阶段。

(11)外显测验阶段(后测):流程同前测的外显测验阶段。

实验流程见图1。

2.1.6 数据分析

外显记忆以正确率与反应时为指标, 正确率为旧词的击中率减去新词的虚报率, 反应时为判断正确旧词的平均反应时。内隐记忆以启动量为指标, 启动量为判断正确新词的反应时减去判断正确旧词的反应时。

图1 实验流程

数据统计分析采用SPSS 17.0软件包进行。

2.1.7 实验伦理

该实验得到福建师范大学伦理委员会同意。

2.2 结果分析

2.2.1 外显记忆结果分析

外显记忆任务中各种条件下的反应时和正确率见表1。

首先我们对正确率进行加工水平(深vs浅) ×实验条件(尼古丁vs安慰剂)×前后测(前测vs后测)的重复测量方差分析。结果发现加工水平主效应显著,(1,29) = 46.14,< 0.001, ηp² = 0.614;实验条件与前后测交互效应显著,(1,29) = 24.78,< 0.001, ηp² = 0.461。简单效应分析发现, 在安慰剂条件下前后测之间差异不显著,(1,29) = 0.03,= 0.861; 而在尼古丁条件下后测比前测成绩更低,(1,29) = 32.91,< 0.001。三者间交互效应显著,(1,29) = 28.58,< 0.001, ηp² = 0.496。进一步简单效应分析表明, 在深加工的后测中, 尼古丁条件下的正确率显著低于安慰剂条件,(1,29) = 22.62,< 0.001, ηp² = 0.438; 而在前测中两者没有差异,(1,29) = 0.38,= 0.542, 说明尼古丁导致深加工条件下, 外显记忆成绩下降。而在浅加工的后测中, 尼古丁条件与安慰剂条件差异不显著,(1,29) = 2.71,= 0.110; 同样在前测中两者差异也不显著,(1,29) = 0.24,= 0.630, 说明尼古丁对浅加工的影响不大。

随后我们对反应时进行加工水平(深vs浅) ×实验条件(尼古丁vs安慰剂)×前后测(前测vs后测)的重复测量方差分析。结果仅发现加工水平主效应显著,(1,29) = 6.236,< 0.05, ηp² = 0.177; 加工水平与前后测交互效应显著,(1,29) = 4.795,< 0.05, ηp² = 0.142。而并没有发现三者交互作用,(1,29) = 0.114,= 0.738; 也没有发现与实验条件有关的交互效应, 说明尼古丁条件与安慰剂条件之间并没有差异, 表明尼古丁对外显记忆的反应时影响不大。

2.2.2 内隐记忆结果分析

内隐记忆任务中各种条件下的启动量见表2。

我们首先对内隐记忆的启动量进行加工水平(深vs浅) ×实验条件(尼古丁vs安慰剂)×前后测(前测vs后测)的重复测量方差分析。结果表明, 实验条件与前后测交互效应显著,(1,29) = 37.47,< 0.001, ηp² = 0.564;在尼古丁条件下, 后测成绩比前测更低,(1,29) = 19.15,< 0.001;而在安慰剂条件下, 后测成绩比前测高,(1,29) = 5.81,< 0.05。三者间交互效应显著,(1,29) = 6.59,< 0.05, ηp² = 0.185。进一步简单效应分析表明, 在深加工的尼古丁条件下, 后测的启动量显著小于前测,(1,29) = 20.33,< 0.001; 而在安慰剂条件中后测的启动量显著大于前测,(1,29) = 4.31,< 0.05, 说明尼古丁导致深加工条件下, 内隐记忆成绩下降。在浅加工的尼古丁条件下, 后测的启动量小于前测,(1,29) = 17.19,< 0.001, ηp² = 0.391; 而在安慰剂条件下两者差异不显著,(1,29) = 0.70,= 0.409, 说明尼古丁也影响了浅加工条件下的内隐记忆成绩, 但是影响程度没有深加工大。

表1 外显记忆任务的正确率和反应时

注:括号内为标准差(下同)

表2 内隐记忆任务的启动量

综上所述, 相对于安慰剂条件, 在尼古丁摄入后, 无论是内隐记忆还是外显记忆, 记忆成绩都有所下降。

3 实验2:尼古丁对记忆不同阶段的影响

实验1发现摄入尼古丁后, 内隐记忆与外显记忆成绩都有一定程度地下降。前人研究已经发现在不同阶段摄入尼古丁对外显记忆的影响不同, 那么对内隐记忆的影响是否也有所不同?编码与提取的非对称性在内隐记忆与外显记忆之间是否一致?为探究这些问题, 实验2分别在编码与提取阶段使用尼古丁, 比较在不同阶段摄入尼古丁对两种记忆影响是否有所不同。在实验2中使用ERP技术, 以进一步了解其中的神经机制与受影响的认知过程。我们推测尼古丁对内隐记忆的不同阶段可能生不同的结果, 并且在ERP结果上, N400新旧效应与P600新旧效应也发生变化。

3.1 方法

3.1.1 被试

共24名被试(男性18人, 女性6人), 平均年龄21.3岁。右利手, 视力或矫正视力正常, 身体健康。均自愿参与实验, 实验结束后付与被试一定报酬。5名被试因叠加数不够而被剔除, 最终19名被试的ERP数据进入分析。

3.1.2 材料

低频双字词1440个, 分为24组, 每组60个, 其余与实验1相同。

3.1.3 尼古丁设备

同实验1。

3.1.4 烟碱依赖量表

同实验1。

3.1.5 实验程序

采用Presentation 0.71软件编制实验程序。被试在隔音室内完成个别施测, 显示器背景为黑色, 距离被试80 cm。被试在实验前2小时内不能使用香烟或其他含有尼古丁的物品。

实验分两天进行, 一次为编码前使用尼古丁, 一次为提取前使用尼古丁, 每位被试都参与两次实验, 两种条件在被试间平衡, 正式实验前同样加入使用过安慰剂的前测, 每次实验包括以下11个阶段:

(1)~(5)步骤同实验1。

(6)尼古丁摄入:在编码条件下, 使用血压计测量血压与心率, 之后使用含尼古丁12 mg/ml的烟油0.1 ml, 过3分钟后再测量血压与心率; 在提取条件下, 被试休息10分钟。

(7)学习阶段:同实验1。

(8)尼古丁摄入:在编码条件下, 被试休息10分钟; 在提取条件下, 被试使用含尼古丁12 mg/ml的烟油0.1 ml, 之后休息, 共10分钟。

(9)内隐测验阶段(实验处理):同实验1。

(10)外显测验阶段(实验处理):同实验1。

实验流程见图2。

3.1.6 行为数据分析

同实验1。

3.1.7 ERP的记录与分析

采用Neuroscan-64导脑电采集分析系统和Ag/AgCl电极帽, 连续记录使用过程中的EEG。电极位置采用10-20扩展电极系统, 单极导联, 以头顶作为参考电极采集数据, 接地点在Fpz和Fz连线的中点, 左眼眶上、下侧2个电极记录垂直眼电, 两眼外侧的2个电极记录水平眼电。滤波带通为0.05~100 Hz, A/D采样率为1000 Hz。脑电采集过程中所有电极与头皮接触电阻均小于5 kΩ。对脑电记录进行脱机迭加平均处理, 分析窗口为−200~ 1200 ms, 用−200~0 ms作为基线进行矫正。伴有眨眼、眼动、肌电等伪迹的数据均被排除, 排除标准为±75 μV。数据离线处理时转化为双侧乳突作参考。

图2 实验流程

对于记忆相关的ERP成分, 我们主要分析额区与顶区新旧效应, 新旧效应是指将旧词引发的平均波幅减去新词的平均波幅所得的差异波。额区新旧效应是在额区的300~500 ms时间段(N400)的差异波, 选取F1、Fz、F2三个电极的平均值作为额区的ERP成分; 顶区新旧效应是在顶区的500~ 800 ms时间段(P600)的差异波, 选取P1、Pz、P2三个电极的平均值作为顶区的ERP成分(唐小庭, 2013; 孟迎芳, 郭春彦, 2009)。对每个成分分别进行2(词类型:深、浅)×2(摄入阶段:编码、提取)×2(前后测:前测、后测)的重复测量方差分析。

头皮后部与前部的N100成分受注意显著影响, 因此将F1、Fz、F2电极的平均值作为额区的N100成分进行分析, 将O1、Oz、O2电极的平均值作为枕区的N100成分, 时间段选取50~150 ms, 枕区P250成分主要受早期语义加工影响(赵仑, 2010), 因此将O1、Oz、O2电极的平均值作为枕区的P250成分进行分析, 时间段选取150~300 ms。对每个成分平均波幅分别进行3(词类型:深、浅、新词)×2(摄入阶段:编码、提取)×2(前后测:前测、后测)的重复测量方差分析。

3.2 实验结果

3.2.1 生理指标

在生理指标上, 收缩压在尼古丁摄入前后差异显著,(23) = −3.20,< 0.01, Cohen’= 0.289, 尼古丁摄入后使收缩压上升。舒张压在尼古丁摄入前后差异边缘显著,(23) = −1.79,= 0.087, Cohen’= 0.435, 同样表现为使用尼古丁后血压上升。心率在尼古丁摄入前后差异不显著,(23) = −1.53,= 0.140。

3.2.2 行为结果

(1)外显记忆结果分析

外显记忆任务中各种条件下的反应时和正确率见表3。

首先我们对正确率进行加工水平(深vs浅)×摄入阶段(编码vs提取)×前后测(前测vs后测)的重复测量方差分析。结果表明, 加工水平主效应显著,(1,23) = 49.26,< 0.001, ηp² = 0.682;前后测主效应显著,(1,23) = 13.07,< 0.05, ηp² = 0.362;后测的记忆成绩低于前测。三者间交互效应边缘显著,(1,23) = 3.54,= 0.073, ηp² = 0.133。进一步简单效应分析表明, 在深加工的编码条件下, 后测的正确率显著低于前测,(1,23) = 6.24,< 0.05, ηp² = 0.213; 提取条件下前测与后测差异边缘显著,(1,23) = 3.49,= 0.075。在浅加工的编码条件下, 前测和后测的差异不显著,(1,23) = 0.12,= 0.733; 在提取条件下, 后测的成绩显著低于前测,(1,23) = 5.52,< 0.05。

随后我们对反应时进行加工水平(深vs浅) × 摄入阶段(编码vs提取) × 前后测(前测vs后测)的重复测量方差分析。结果仅发现加工水平主效应显著,(1,23) = 6.20,< 0.05, ηp² = 0.212; 前后测主效应显著,(1,23) = 6.88,< 0.05, ηp² = 0.230。其他主效应与交互效应均不显著。

(2)内隐记忆结果分析

内隐记忆任务中各种条件下的启动量见表3。

我们对启动量进行加工水平(深vs浅)×摄入阶段(编码vs提取)×前后测(前测vs后测)的重复测量方差分析。结果表明, 加工水平主效应不显著,(1,23) = 0.004,= 0.951;摄入阶段与前后测交互效应显著,(1,23) = 7.74,< 0.05, ηp² = 0.252。进一步简单效应分析表明, 在编码条件下前测与后测差异不显著,(1,23) = 0.01,= 0.913;在提取条件下差异显著,(1,23) = 16.86,< 0.001, 说明在提取阶段下, 尼古丁使内隐记忆成绩显著下降。三者交互效应不显著,(1,23) = 0.29,= 0.597。但是观察描述性统计可以看出, 在编码条件下, 深加工下前测与后测的趋势与浅加工不同, 因此我们单独对编码条件下的内隐记忆成绩做加工水平(深vs浅) ×前后测(前测vs后测)的重复测量方差分析, 结果发现加工水平与前后测交互效应边缘显著,(1,23) = 3.14,= 0.089, ηp² = 0.120, 说明在编码前摄入尼古丁对深浅加工的影响不同。

表3 外显记忆任务的正确率和反应时

表4 内隐记忆任务的启动量

3.2.3 ERP结果

(1) 外显记忆结果分析

首先我们对记忆相关的ERP成分的差异波进行方差分析, 结果发现在300~500 ms (N400), 摄入阶段与前后测之间交互效应边缘显著,(1,18) = 4.26,= 0.054, ηp² = 0.191。进一步简单效应分析结果显示, 在编码条件下, 前测与后测的差异不显著,(1,18) = 0.57,= 0.461; 而在提取条件下差异显著,(1,18) = 4.40,< 0.05。表现为前测中旧词引起的波幅比新词更正(新旧效应), 而后测中则没有新旧效应, 说明提取前摄入尼古丁N400成分的新旧效应消失。在500~800 ms (P600), 前后测与摄入阶段交互效应边缘显著,(1,18) = 3.423,= 0.081, ηp² = 0.160。进行简单效应分析后发现, 在编码条件下, 前测与后测差异不显著,(1,18) = 0.06,= 0.809; 在提取条件下, 前测与后测差异显著,(1,18) = 4.44,< 0.05。其他主效应与交互效应均不显著。结果见图3。

其次对注意等相关的ERP成分进行分析, 结果发现在额区50~150 ms (N100), 观察到三个变量之间交互作用显著,(2,17) = 3.82,< 0.05, ηp² = 0.175。简单效应分析结果发现, 在编码的深加工条件下, 前测与后测的差异显著,(1,18) = 4.70,< 0.05; 在提取的深加工条件下差异不显著,(1,18) = 0.94,= 0.346。在编码的浅加工条件下差异显著,(1,18) = 5.60,< 0.05, ηp² = 0.237; 在提取的浅加工条件下差异不显著,(1,19) = 2.35,= 0.143, 说明只有在编码阶段摄入尼古丁, 才影响额区的N100成分, 而提取前摄入则没有影响。而在枕区的50~150 ms (N100), 前后测与摄入阶段的交互作用差异显著,(1,18) = 4.71,< 0.05, ηp² = 0.207。进一步简单效应分析结果发现, 在编码条件下前测与后测差异不显著,(1,18) = 0.05,= 0.825; 在提取条件下两者差异显著,(1,18) = 6.29,< 0.05, ηp² = 0.259, 说明在编码前摄入尼古丁, 对枕区的N100成分没有影响, 而在提取前摄入尼古丁则对枕区N100产生影响。在150~300 ms (P250), 前后测与摄入阶段之间的交互效应显著,(1,18) = 8.02,< 0.05, ηp² = 0.308。进一步简单效应分析发现, 在编码条件下, 前测与后测差异不显著,(1,18) = 2.59,= 0.125; 在提取条件下, 前测与后测差异边缘显著,(1,18) = 4.34,= 0.052, 与枕区N100分成相似, 提取前摄入尼古丁影响P250成分, 而编码前摄入则没有影响。

图3 外显记忆的新旧词差异波, A为编码前摄入尼古丁条件, B为提取前摄入尼古丁条件

(2) 内隐记忆结果分析

首先, 我们同样对记忆相关的ERP成分的差异波进行方差分析, 结果发现在300~500 ms (N400), 三个变量间交互作用显著,(1,18) = 5.85,< 0.05, ηp² = 0.245。进一步简单效应分析结果发现, 在编码前摄入尼古丁的情况下, 深加工条件下的前测与后测之间差异显著,(1,18) = 4.81,< 0.05, ηp² = 0.211, 表现为前测中旧词的波幅比新词更正(新旧效应), 而后测中则没有新旧效应。在浅加工条件下, 两者差异不显著,(1,18) < 0.001,= 0.996。在提取前摄入尼古丁的情况下, 深加工与浅加工条件下后测中的新旧效应比前测更弱, 但是差异不显著,(1,18) = 1.32,= 0.266;(1,18) = 2.35,= 0.143 (结果见图4)。

其次再对注意等相关的ERP成分进行方差分析, 在额区的50~150 ms (N100), 各主效应及交互效应均不显著。在枕区的50~150 ms (N100), 仅有摄入阶段主效应边缘显著,(1,18) = 3.202,= 0.090, ηp² = 0.151。其他主效应及交互效应均不显著。在150~300 ms (P250), 前后测主效应显著,(1,18) = 7.35,< 0.05, ηp² = 0.290。

图4 内隐记忆的新旧词差异波, A为编码前摄入尼古丁条件, B为提取前摄入尼古丁条件

4 总讨论

本研究采用词汇再认与词汇判断测验, 通过两个实验, 探讨了内隐与外显记忆在尼古丁的影响下, 记忆成绩是否发生变化以及发生怎样的变化。实验1发现, 相对于安慰剂组, 尼古丁的摄入显著降低了随后内隐与外显记忆成绩; 实验2中外显记忆上的结果发现, 尼古丁对深加工下记忆成绩具有更显著的影响。行为结果上, 无论在编码前亦或是提取前摄入尼古丁都降低了深加工条件下的再认成绩; 而浅加工条件的记忆成绩只在提取前摄入尼古丁的情况下受到影响。在ERP结果上, 提取前摄入尼古丁对N400与P600成分造成了与行为类似的削减作用。内隐记忆上的结果发现, 尼古丁同样对深加工下的内隐记忆提取影响更为明显, 行为结果上, 提取前摄入尼古丁对深、浅加工条件的词汇判断成绩构成类似的影响。在ERP结果上, 尼古丁对深加工条件的编码造成了更明显的影响, 使得随后的内隐记忆提取的N400成分产生了相应的降低。

4.1 尼古丁对外显记忆的影响

本研究中发现, 编码前摄入尼古丁使深加工条件下的记忆成绩下降, 这一结果与多数研究不同。前人研究中, 虽然尼古丁同样仅对深加工产生影响, 但是表现为记忆成绩上升, 不同结果的原因可能是由于本研究中摄入胆碱浓度较高导致。Bentley, Driver和Dolan (2011)分析了多项研究发现, 胆碱水平与记忆成绩及相关的大脑激活水平呈倒U型曲线关系。胆碱浓度较低时, 随着浓度升高, 额−顶区的激活程度上升。当超过一定浓度后激活程度反而下降, 相似的情况还发生在视觉皮层与海马。本研究中尼古丁浓度较高(12mg/ml), 因此产生记忆成绩下降的结果。不同于编码条件, 在提取前摄入尼古丁后, 不同加工水平的记忆成绩都有一定程度的下降, 这一点与前人研究一致, 在提取阶段胆碱浓度上升将不利于记忆提取(Rogers & Kesner, 2003; Gais & Born, 2004; Kukolja et al., 2009)。

分析尼古丁对不同加工水平的影响, 本研究的结果也与前人相似(Warburton et al., 2001; FitzGerald et al., 2008), 都表现为深加工条件下记忆成绩受到影响而浅加工不受影响。如前言所述, FitzGerald等人(2008)已通过脑成像研究发现, 尼古丁在编码过程中影响了语义加工的脑区, 而未影响其他非语义加工脑区。另一方面, 在提取前摄入尼古丁时, 尼古丁对不同加工水平的影响没有差异。在编码阶段, 深浅加工采用不同的编码任务, 尼古丁对两种加工水平的记忆成绩产生不同影响。而在提取阶段, 深浅加工条件采用相同的提取任务, 尼古丁则对两种条件都产生影响。可以看出, 尼古丁对记忆的影响与实验任务较为一致。我们推测, 由于两种加工在提取时采用的是相同的任务, 因此调用的是同一模块, 尼古丁影响了提取所调用的模块, 导致记忆成绩发生变化。

观察ERP结果进一步发现, 提取前摄入尼古丁使N400与P600成分都受到影响。最近研究发现N400反映了记忆中的概念启动, 它是指对概念信息的重复加工产生的反应易化, 而P600则与熟悉性有关, 它是当旧刺激再次呈现时对其产生的主观熟悉感(Voss & Paller, 2006; Paller, Voss, & Boehm, 2007; 郭春彦, 高传吉, 李兵兵, 2013)。实验结果中N400成分受到影响, 说明尼古丁影响了外显记忆中自动化的成分。尼古丁不仅影响自动化的概念启动, 也影响了有意识提取的熟悉性(P600)。前人研究发现, 相对于非吸烟者, 吸烟者的前额皮层、右前脑岛等区域在执行任务时激活程度更高, 并伴随任务成绩更差(Sutherland, Ross, Shakleya, Huestis, & Stein, 2011)。Sutherland认为, 这是因为长期吸烟使吸烟者处理信息的效率降低, 需要额外的高级控制操作对任务进行处理, 显示出更强的大脑皮层激活。P600是与外显记忆有关的成分, 同样受到高级控制操作调控, P600成分的波幅受到影响并伴随行为成绩下降, 可能是由于尼古丁降低了被试处理信息时的效率, 导致执行任务时调用了更多的认知资源。

另外, 我们发现在提取前摄入尼古丁条件下, 除了与记忆相关的N400与P600成分受影响外, 与注意相关的N100成分和与早期语义加工相关的P250成分也都受到影响。根据非特异性学说, 胆碱可能通过影响其他心理机能间接地影响记忆。结果说明尼古丁可能不完全是直接对记忆产生影响, 也通过注意等其他心理机能对记忆产生间接的影响。

4.2 内隐记忆

本研究中被试的内隐记忆在尼古丁影响下, 表现出成绩下降的现象, 说明尼古丁同样能对内隐记忆产生影响。本研究的结果与Danion等人(1990)和Schifano和Curran (1994)的结果不一致, 不一致的原因可能由于本研究与前人研究采用的实验范式不同。前文提到同一变量可能对内隐记忆的两种任务产生不同影响, 本研究中采用的词汇判断任务, 与Bentley等人(2003)的实验任务更为相似。进一步分析发现, 在编码前摄入尼古丁对于不同加工水平的内隐记忆成绩的影响不同, 深加工条件下的内隐记忆成绩降低, 浅加工则不受影响, 这一结果与多数关于内隐记忆的理论相违背。以往观点认为, 内隐记忆只与记忆项目的知觉特性相关, 而不涉及概念层面。多重记忆系统理论认为, 内隐记忆依赖于知觉表征系统, 与支持外显记忆行为的情节系统是功能性分离的(Gazzaniga, 1998)。迁移适当加工理论也认为, 内隐记忆主要依赖于知觉加工, 外显记忆主要依赖概念加工(Roediger & McDermott, 1993)。在编码前摄入尼古丁使被试在编码记忆项目时语义加工的脑区受到影响, 进而影响到概念加工过程。而非语义加工脑区不受影响, 因而没有影响知觉加工过程。根据以往观点, 内隐记忆不涉及概念加工仅涉及知觉加工, 以此推论即使概念加工受到影响, 那么内隐记忆成绩也不应受到影响, 但本研究的结果与其不符, 这说明内隐记忆同样也涉及概念加工。另外, 已有研究发现, 呈现与先前学习的项目概念相关的刺激时, 也能引起内隐记忆中的启动效应, 即概念启动, 这也说明内隐记忆不完全依赖于知觉表征。

内隐记忆成绩在提取前摄入尼古丁后消失, 而编码前摄入尼古丁仅仅使深加工条件下的成绩下降, 这说明提取阶段对于尼古丁更为敏感。前言中提到内隐记忆的编码与提取存在非对称性, 编码阶段的干扰对于内隐记忆并不产生影响, 而提取阶段的干扰则使内隐记忆成绩显著下降(孟迎芳, 郭春彦, 2007, 2009; 孟迎芳, 于海莉, 2012), 由此看出内隐记忆在提取阶段更为脆弱, 更易受到其他因素影响。本研究的结果同样也发现内隐记忆在提取阶段的脆弱性, 相对于编码阶段, 提取阶段受尼古丁影响更大。

ERP结果与行为结果一致, 在编码前摄入尼古丁的深加工条件下, 前测与后测在N400成分上差异显著, 并且在行为结果上内隐记忆成绩下降。而在浅加工条件下N400差异不显著, 同时内隐记忆成绩没有受到影响。N400新旧效应是指代内隐记忆的ERP成分, 前人研究发现当内隐记忆受到影响后, 将表现出启动量下降与N400新旧效应消失。另一方面, N400与概念启动有关, 本研究结果中的深加工条件下内隐记忆成绩下降, 并伴随N400成分受到影响。印证了编码前摄入尼古丁损害了编码过程中的概念加工过程, 使随后内隐记忆提取受到影响。

在提取前摄入尼古丁条件下, 后测的N400新旧效应比前测低, 但是差异不显著, 而内隐记忆成绩下降程度却远高于编码阶段。说明尼古丁对内隐记忆提取阶段的影响, 并不仅仅是对记忆的提取过程产生直接的影响。在P250成分上可以观察到前后测的主效应, 表现为后测中P250成分的波幅比前测更低, 说明尼古丁影响了提取过程中的早期语义加工。由于内隐记忆的提取阶段相对于编码阶段

更易受到干扰, 因此提取前摄入尼古丁条件下内隐记忆成绩下降程度更大可能是由于语义加工受到影响导致。

4.3 内隐记忆与外显记忆的对比

对比内隐与外显记忆的结果可以发现, 两者在尼古丁的影响下表现出一定的相似性, 但是也略有不同。编码前摄入尼古丁使两种记忆在深加工条件下的记忆成绩下降, 但是对浅加工没有影响。提取前摄入尼古丁使两种记忆在两种加工水平上都下降, 而影响程度不同。对于本研究的结果, 使用Moscovitch等人提出的成分−加工模型(component of processing model)可以较好地解释。该理论认为记忆过程受三个重要的系统调节:新皮层系统, 内侧颞叶/海马系统和前额皮层/中央系统。其中, 新皮层系统包含知觉和语义模块, 无论内隐记忆还是外显记忆, 在编码阶段都依赖该系统对刺激事件进行登记并转化成前语义表征, 之后进入中央系统进行加工, 最后进入海马系统储存信息。内隐记忆中的重复启动效应主要依赖于该系统在提取阶段对过去信息的再激活。而外显记忆同时受内侧颞叶/海马系统和前额皮层/中央系统的调节。外显提取经由海马系统信息的调出, 随后进入中央系统加工并提取。内隐记忆与外显记忆在编码阶段的任务相同, 因此编码所使用的模块相同, 若尼古丁影响语义模块的登记, 那么在深加工条件下无论是内隐记忆还是外显记忆都会被影响。而知觉模块没有受到影响, 因此浅加工条件下两种记忆成绩都不会受到影响。两种记忆在提取阶段由于任务不同调用不同的模块, 而尼古丁对不同的提取模块影响不同, 因此发生两种记忆之间的分离现象。但是在同一种记忆中, 两种加工方式在提取时调用相同的模块, 因此在加工水平上没有发生分离。

关于内隐记忆与外显记忆的分离现象, 不同观点主要分歧为两者是否从属于不同记忆系统。若两者属于不同的记忆系统, 那么在尼古丁的影响下两种记忆将会发生明显不同的变化, 但是本研究中编码前摄入尼古丁对两种记忆的影响较为一致, 仅在提取前摄入尼古丁条件下略有不同, 因此并不符合该观点。相反, 本研究结果中尼古丁对记忆影响的结果与任务类型具有较高一致性, 即尼古丁对记忆的影响随任务类型的不同发生变化, 结果更符合两者属于同一记忆系统的观点。因此内隐记忆与外显记忆的内在生理机制可能有较大程度的重叠。

Alipour, A., Aerab-Sheybani, K., & Akhondy, N. (2012). Effects of handedness and depth of processing on the explicit and implicit memory., 29−33.

Bentley, P., Driver, J., & Dolan, R. J. (2009). Modulation of fusiform cortex activity by cholinesterase inhibition predicts effects on subsequent memory.(9), 2356−2371.

Bentley, P., Driver, J., & Dolan, R. J. (2011). Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging.(4), 360−388.

Bentley, P., Vuilleumier, P., Thiel, C. M., Driver, J., & Dolan, R. J. (2003). Cholinergic enhancement modulates neural correlates of selective attention and emotional processing.(1), 58−70.

Brooks, B. M., Gardiner, J. M., Kaminska, Z., & Beavis, Z. (2001). Implicit versus explicit retrieval of surnames of famous people: Dissociative effects of levels of processing and age.(1), 118−130.

Buccafusco, J. J., Letchworth, S. R., Bencherif, M., &Lippiello, P. M. (2005). Long-lasting cognitive improvement with nicotinic receptor agonists: Mechanisms of pharmacokinetic-pharmacodynamic discordance., 352–360.

Cabeza, R., & Moscovitch, M. (2013). Memorysystems, processing modes, and components: Functional neuroimaging evidence.(1), 49−55.

Danion, J. M., Zimmermann, M. A., Willard-Schroeder, D., Grangé, D., Welsch, M., Imbs, J. L., & Singer, L. (1990). Effects of scopolamine, trimipramine and diazepam on explicit memory and repetition priming in healthy volunteers.(3), 422−424.

Dumas, J. A., McDonald, B. C., Saykin, A. J., McAllister, T. W., Hynes, M. L., West, J. D., & Newhouse, P. A. (2010). Cholinergic modulation of hippocampal activity during episodic memory encoding in postmenopausal women: A pilot study.(4), 852−859.

FitzGerald, D. B., Crucian, G. P., Mielke, J. B., Shenal, B. V., Burks, D., Womack, K. B., … Heilman, K. M. (2008). Effects of donepezil on verbal memory after semantic processing in healthy older adults.(2), 57−64.

Gais, S., & Born, J. (2004). Low acetylcholine during slow- wave sleep is critical for declarative memory consolidation.(7), 2140−2044.

Gazzaniga, M. S. (1998). Brain and conscious experience., 181−192; discussion 192−193.

Guo, C. Y., Gao, C. J., & Li, B. B. (2013). FN400 effect: Conceptual processing in explicit memory test.(9), 1521−1530.

[郭春彦,高传吉,李兵兵. (2013). Fn400效应:外显记忆测量中的概念启动加工.(9), 1521− 1530.]

Huang, J. J. (2008).(Unpublished master’s thesis). Zhejiang University.

[黄晶晶. (2008).(硕士学位论文).浙江大学.]

Knopman, D. (1991). Unaware learning versus preserved learning in pharmacologic amnesia: Similarities and differences.(5), 1017−1029.

Korsnes, M. S., & Magnussen, S. J. (2014). Fmri evidence for dissociation between priming and conscious recognition.(3), 509−517.

Kukolja, J., Thiel, C. M., & Fink, G. R. (2009). Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans.(25), 8119−8128.

Levin, E. D., McClernon, F. J., & Rezvani, A. H. (2006). Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization., 523–539.

Lin, W. J., Meng, Y. F., & Lin, J. Y. (2017). Effects of interference on retrieval process in implicit memory.(7), 897−908.

[林无忌,孟迎芳,林静远. (2017).提取干扰对内隐记忆的影响.(7), 897−908.]

Lozito, J. P., & Mulligan, N. W. (2010). Exploring the role of attention during implicit memory retrieval.(3), 387−399.

MacLeod, C. M. (2008). Implicit memory tests: Techniques for reducing conscious intrusion. In J. Dunlosky & R. A. Bjork (Eds.),(pp. 245−263). New York, NY, US: Psychology Press.

Meng, Y. F., & Guo, C. Y. (2007). The asymmetric effect of interference at encoding or retrieval on implicit and explicit memory.(4), 579–588.

[孟迎芳,郭春彦. (2007).编码与提取干扰对内隐和外显记忆的非对称性影响.(4), 579–588.]

Meng, Y. F., & Guo, C. Y. (2009). The asymmetric relationship between encoding and retrieval in implicit and explicit memory.(8), 694–705.

[孟迎芳,郭春彦. (2009).内隐与外显记忆的编码与提取非对称性关系.(8), 694−705.]

Meng, Y. F., & Yu, H. L. (2012). The dissocciation between encoding and retrieval in implicit and explicit memory.(3), 50–55.

[孟迎芳,于海莉. (2012).内隐记忆与外显记忆编码与提取加工的分离.(3), 50−55.]

Narme, P., Peretz, I., Strub, M. L., & Ergis, A. M. (2016). Emotion effects on implicit and explicit musical memory in normal aging.(8), 902−913.

Paller, K. A., Voss, J. L., & Boehm, S. G. (2007). Validating neural correlates of familiarity.(6), 243−250.

Prull, M. W., Lawless, C., Marshall, H. M., & Sherman, A. T. (2016). Effects of divided attention at retrieval on conceptual implicit memory., 5.

Roediger, H. L., III, & McDermott, K. B. (1993). Implicit memory in normal human subjects. In F. Boller & J. Grafman (Eds.),(Vol. 8, pp. 63–131). Amsterdam: Elsevier.

Rogers, J. L., & Kesner, R. P. (2003). Cholinergic modulation of the hippocampus during encoding and retrieval.(3), 332−342.

Rosier, A. M., Cornette, L., Dupont, P., Bormans, G., Mortelmans, L., & Orban, G. A. (1999). Regional brain activity during shape recognition impaired by a scopolamine challenge to encoding.(10), 3701–3714.

Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory.(6676), 595−598.

Schifano, F., & Curran, H. V. (1994). Pharmacological models of memory dysfunction? A comparison of the effects of scopolamine and lorazepam on word valence ratings, priming and recall.(3), 430−434.

Sheldon, S. A. M., & Moscovitch, M. (2010). Recollective performance advantages for implicit memory tasks.(7), 681–697.

Sutherland, M. T., Ross, T. J., Shakleya, D. M., Huestis, M. A., & Stein, E. A. (2011). Chronic smoking, but not acute nicotine administration, modulates neural correlates of working memory.(1), 29−42.

Tang, X. T. (2013).(Unpublished master’s thesis). Fujian Nornal University.

[唐小庭. (2013).(硕士学位论文).福建师范大学.]

Verneau, M., van der Kamp, J., Savelsbergh, G. J. P., & de Looze, M. P. (2014). Age and time effects on implicit and explicit learning.(4), 477−511.

Voss, J. L., & Paller, K. A. (2006). Fluent conceptual processing and explicit memory for faces are electrophysiologically distinct.26(3), 926−933.

Warburton, D. M., Skinner, A., & Martin, C. D. (2001). Improved incidental memory with nicotine after semantic processing, but not after phonological processing.(2), 258−263.

Zhao, L. (2010).. Nanjing, China: Southeast University Press.

[赵仑. (2010)..南京:东南大学出版社.]

Effects of nicotine on implicit and explicit memory

LIN Jingyuan1,2; LIN Wuji1; MENG Yingfang1

(1School of Psychology, Fujian Normal University, Fuzhou 350117, China) (2College of Tourism, Huaqiao University, Quanzhou 362021, China)

Studies have shown that choline is a substance that isclosely related to memory. Previous studies focused on the effect of cholinergic drugs on explicit memory, and those results revealed that explicit memory is sensitive to most cholinergic drugs. However, relatively few studies have discussed the effect of cholinergic drugs on implicit memory. Furthermore, whether the effect of cholinergic drugs on implicit memory is consistent with explicit memory is still uncertain.

The effect of cholinergic drugs on memory was investigated by drawing a comparison between the participants with nicotine condition and those without. We usedlexical decision and lexical recognition taskstotest implicit and explicit memory, respectively. In experiment 1, 30 subjects participated in two occasions, 2 days apart. They participated once in memory tasks after receiving 12 mg/ml body weight of nicotine and once after receiving 0mg/ml placebo. Experiment 2 examined whether receiving treatment before encoding or before the retrieval phase would moderate the cholinergic effect in explicit and implicit memory.In experiment 2, 19 subjects participated in two experimental occasions, 2 days apart, as follows:after receiving 12mg/ml body weight of nicotine before the encoding phase;after receiving nicotine before the retrieval phase. In addition, we adopted event-related potential (ERP) technology to observe the affected ERPs. Participants were instructed to response to corresponding items by pressing keyboard. The Reaction Time and Accuracy data on retrieval phase of the two memory tasks were recorded and analyzed.

Implicit and explicit memory performance declined under nicotine condition in both experiments. It reflected that receiving nicotine not only impacted explicit memory but also implicit memory. Furthermore, nicotine effects aremoderated by the level of processing at the encoding phase. Such impact only occurredon the deep processing level. Moreover, memory retrieval after receiving nicotine wasaffected. These effects were more remarkable on implicit memory retrieval than on explicit memory. The results of ERP data also showed that related ERPs ofmemory were affected by nicotine.

In conclusion, results from the current study revealed that effects of cholinergic drugs were similar on implicit and explicit memory. The rest of the segregated results might have been due to the discrepancy of memory tasks rather than the differences in physiological mechanisms of the two memory types. Implicit memory and explicit memory might not belong to two extremely independent memory systems, because there are some covariant effects existing between them.

nicotine; implicit memory; explicit memory; processing level

2017-10-12

* 福建省自然科学基金计划项目(2018J01719)资助。

孟迎芳, E-mail: mengyf1978@126.com

B842; B845

10.3724/SP.J.1041.2018.00940

猜你喜欢
胆碱尼古丁编码
生活中的编码
一种包埋氯化胆碱的微胶粉制备工艺
认清尼古丁的真面目
《全元诗》未编码疑难字考辨十五则
饲料中添加氯化胆碱对拉萨裸裂尻鱼生长性能的影响
子带编码在图像压缩编码中的应用
Genome and healthcare
不同还原态叶酸和胆碱组合对人结肠腺癌细胞hMLH1和hMSH2转录水平的影响
电刺激大鼠皮层桶状区对胆碱乙酰移位酶表达的影响
欧洲飞机提供尼古丁代用品