不同施肥模式对单季稻生长和氮磷流失的影响

2020-06-01 06:28王新霞王季丰侯琼王肖君倪吾钟
关键词:产流铵态氮氮磷

王新霞,王季丰,侯琼,王肖君,倪吾钟

(浙江大学环境与资源学院,浙江省农业资源与环境重点实验室,杭州 310058)

为更好地应对日益严重的粮食安全与生态环境退化问题,研究者们致力于在保证作物产量的同时减轻污染负荷,并逐渐成为一种研究趋势[1-3]。盲目追求农作物高产使得我国化肥施用量居高不下,过量养分通过淋溶和径流等方式进入周围环境,导致水体中的氮磷浓度持续升高,土壤富营养化严重[4-6]。高效施用肥料,从源头减少稻田氮磷养分流失,对防治农业非点源污染意义重大。

肥料的过量施用是导致氮磷损失最主要的原因,根据作物生长需求与土壤肥力确定施肥量是减少氮磷损失的关键,适当减少氮磷施用量可以在保证作物产量的同时减少养分损失[7-8]。同时,施用有机肥料也是减少资源浪费、促进农业可持续发展的必要举措[9]。有研究表明,有机无机肥配合施用能有效改善土壤理化性质,提高肥料利用率[10-11],关于稻田氮磷养分流失的研究主要集中在有机无机肥配施种类及比例、稻田田面水养分动态变化、氮磷流失风险的影响方面[12-14],而天然降雨条件下优化测土配方施肥结合有机肥部分替代化肥的产量效应及对氮磷流失的作用少见报道。本研究拟在明确4种典型施肥模式对水稻营养状况和籽粒产量影响的基础上,阐明不同施肥模式下土壤水溶性氮磷含量与稻田氮磷流失的关系,提出保持水稻产量水平、削减稻田氮磷流失负荷的施肥模式,为农田面源污染的控制提供技术支撑。

1 材料与方法

1.1 试验材料

试验于2016年5—11月在浙江省湖州市安吉县溪龙村(30°45′36″N,119°44′52″E)进行,该区属亚热带海洋性季风气候区,2016年全年降雨量2 003 mm,年日照时间1 763 h,年平均气温17.0℃。供试土壤为泥质田土壤,其基本理化性质为:全氮(N)1.20 g/kg,全磷(P)0.19 g/kg,全钾(K)10.10 g/kg,碱解氮65.30 mg/kg,有效磷12.30 mg/kg,速效钾84.10 mg/kg,pH 4.50。供试水稻品种为‘甬优538’。供试肥料为尿素、过磷酸钙、氯化钾、商品有机肥(含N 1.54%,P2O52.63%,K2O 0.69%,有机质35.00%)。

试验设置4个处理,分别为常规施肥(conventional fertilization,CF)、常规推荐施肥(conventional recommended fertilization,CRF)、优化测土配方施肥(optimized soil testing for formulated fertilization,TF)和优化测土配方基础上有机肥部分替代化肥施肥(application of organic manure as a partial replacement for chemical fertilizers based on optimized soil testing for formulated fertilization,TFM),其中有机肥氮代替化肥氮比例为25%,具体养分投入量见表1。各处理重复4次,每个小区面积为32 m2,随机排列。肥料均匀撒施,其他田间管理与当地一致。

小区田埂用塑料薄膜覆盖,防止小区间串灌串排。将径流收集装置埋入田埂排水口处,上管道高于淹水层2~3 cm,下管道与田面平行。当水稻处于淹水期时,将水阀设置为上管道排水,降雨后水面上升至上水管口排水时产生径流;当水稻处于晒田期及成熟期,将水阀设置为下管道排水,降雨后水从下管道排出从而产生径流。

1.2 测定项目及方法

试验过程中,每次降雨产流后采集小区径流装置中水样和土壤样品,测定径流水铵态氮、硝态氮、总氮、无机磷、总磷含量,测定土壤水溶性总氮、铵态氮、硝态氮、总磷、无机磷含量,同时读取水表读数,计算径流量。

水稻收获期各小区单独收割记产,同时采集水稻秸秆和籽粒样品,籽粒脱壳后再分为糙米和稻壳。105℃条件下杀青30 min,75℃烘干至恒量后分别进行称量,粉碎植株样品,过筛备用,测定其氮磷含量。

径流水总氮、铵态氮、硝态氮、总磷、无机磷含量测定分别采用碱性过硫酸钾消解-紫外分光光度法、靛酚蓝比色法、紫外分光光度法、钼酸铵分光光度法、过硫酸钾氧化-钼蓝比色法。土壤基本理化性质和植株氮磷含量按照农化常规分析方法进行测定[15]。

1.3 数据处理与统计分析

采用Excel 2016和SPSS 22.0对数据进行处理,采用邓肯新复极差法进行多重比较。

表1 水稻养分投入量Table 1 Nutrient input of rice kg/hm2

2 结果与分析

2.1 不同施肥模式对水稻生长和营养状况的影响

2.1.1 收获期地上部生物量

不同施肥模式下单季稻地上部生物量情况见表2。收获期各处理地上部总生物量为15 654.4~16 894.7 kg/hm2,处理 CRF、TF、TFM 与常规施肥(CF)相比,地上部总生物量均显著提高(P<0.05)。各处理籽粒产量为8 180.7~8 477.8 kg/hm2,3种推荐施肥均可显著提高籽粒产量(P<0.05),其中处理TFM效果最好。各处理之间糙米生物量无显著差异,处理CRF最高。处理TFM稻壳生物量最高,与处理TF相当,显著高于处理CRF(P<0.05)和CF(P<0.05)。处理CRF秸秆生物量最高,与处理TFM含量相当,两者均显著高于处理CF(P<0.05)。

表2 水稻各部位生物量Table 2 Biomass of rice parts kg/hm2

2.1.2 收获期地上部氮磷含量

不同施肥模式下水稻不同部位氮磷含量见表3。各处理秸秆、稻壳、糙米氮质量分数分别为10.45~10.97、5.79~6.44、15.24~16.19 g/kg,且不同处理各部位氮含量均无显著差异。各处理秸秆、稻壳、糙米磷质量分数分别为2.01~2.45、1.03~1.25、4.43~4.53 g/kg,其中各处理糙米磷含量无显著差异,处理CF秸秆磷含量最高,显著高于处理CRF和TF(P<0.05)。处理CF稻壳磷含量显著高于其他处理,且处理CRF、TF和TFM稻壳磷含量相当。

2.2 不同施肥模式对稻田氮磷养分流失的影响

2.2.1 稻田径流量

不同施肥模式下稻田径流量见表4。水稻生育期内共发生4次产流事件,累计径流量为200.3~205.1 m3/hm2,各处理间无显著差异。2016年7月6日产流事件发生于基肥施用后,径流量占总径流量的50%左右。后3次产流事件距离施肥事件均超过1个月,径流量较低。

表3 水稻不同部位氮磷含量Table 3 Nitrogen and phosphorus contents in different parts of rice g/kg

表4 稻田径流量Table 4 Runoff volumes of paddy fields m3/hm2

2.2.2 径流水氮素质量浓度及流失量

由表5可知,第1次产流事件(7月6日)各处理径流中总氮质量浓度在15.77~23.75 mg/L之间,其中铵态氮占总氮比例为48.45%~52.55%,与常规施肥处理相比,处理CRF、TF和TFM均可降低径流水中铵态氮质量浓度,其中处理TFM降低程度最大,降幅为38.78%。后3次产流事件皆发生在施肥1个月以后,此时径流水中总氮质量浓度已降低到2.15~3.64 mg/L,处于较低水平。4次产流事件中处理TFM径流水总氮、铵态氮质量浓度皆显著低于处理TF(P<0.05)。

处理TFM稻田径流总氮、铵态氮流失量在每次产流事件中均显著低于处理CF(P<0.05);第1次产流事件中稻田总氮、铵态氮、硝态氮流失量最高,总氮径流流失量占整个生育期流失量的88.0%~90.2%;后3次产流事件中稻田氮素流失量大幅度下降。

2.2.3 径流水磷素质量浓度及流失量

在4次产流事件中,各处理径流水中总磷质量浓度在0.16~0.38 mg/L之间(表6),处理CRF、TF、TFM径流水总磷质量浓度在后3次产流事件中无显著差异(P>0.05),处理CF径流水总磷质量浓度在每次产流事件中均最高,处理TFM径流水总磷质量浓度均显著低于处理CF(P<0.05)。各处理径流水中无机磷质量浓度在0.011~0.259 mg/L之间,处理CF径流水无机磷质量浓度最高;除第2次产流事件外,处理TF和TFM径流水无机磷质量浓度均显著低于处理CF(P<0.05);除第1次产流事件外,处理TF与TFM径流水中无机磷质量浓度无显著差异。

除第2次产流事件外,处理TFM总磷、无机磷流失量均显著低于处理CF(P<0.05);第1次产流事件中稻田径流总磷、无机磷流失量最高,其中总磷径流流失量占整个生育期流失量的61.58%~66.95%;后3次产流事件中稻田磷素流失量大幅度下降。

2.2.4 水稻生长期间氮磷累积流失量

水稻生育期内各处理总氮累积流失量为1 879.5~2 817.0 g/hm2(表7),处理CRF、TF、TFM总氮累积流失量与处理CF相比分别减少了2.75%、14.15%和33.28%,处理TF和TFM不同形态氮素累积流失量均显著低于处理CF(P<0.05),其中处理TFM总氮、铵态氮累积流失量显著低于处理TF(P<0.05)。铵态氮是水稻生育期径流氮素流失的主要形态,占总氮累积流失量的44.38%~48.49%。

表5 不同施肥模式下稻田径流水氮素质量浓度及流失量Table 5 Nitrogen concentration in runoff water and losses of paddy fields under different fertilizing models

表6 不同施肥模式下稻田径流水磷素质量浓度及流失量Table 6 Phosphorus concentration in runoff water and losses of paddy fields under different fertilizing models

水稻生育期内各处理总磷累积流失量为43.0~61.0 g/hm2,处理CRF、TF、TFM无机磷素累积流失量均显著低于处理CF(P<0.05),与处理CF相比,处理CRF、TF、TFM总磷累积流失量分别降低了19.02%、21.31%和29.51%。处理TF和TFM不同形态磷素累积流失量均显著低于常规施肥处理(P<0.05),且处理TFM总磷、无机磷累积流失量显著低于处理TF(P<0.05)。

2.3 径流水氮磷含量与土壤水溶性氮磷含量的相关性

径流水氮磷含量与土壤水溶性氮磷含量相关性如表8所示。径流水铵态氮含量与土壤水溶性铵态氮含量、径流水硝态氮含量与土壤水溶性硝态氮含量、径流水总氮含量与土壤水溶性总氮含量、径流水无机磷含量与土壤水溶性无机磷含量、径流水总磷含量与土壤水溶性总磷含量均呈极显著正相关(P<0.01)。

表7 不同施肥模式下氮磷累积流失量Table 7 Nitrogen and phosphorus cumulative loss amounts of runoff water under different fertilizing models g/hm2

表8 径流水氮磷含量与土壤水溶性氮磷含量的相关性Table 8 Correlation coefficients of nitrogen(N)and phosphorus(P)contents in runoff water to soil dissolved N and P contents

3 讨论

水稻生育期氮磷吸收是产量形成的基础[16-17]。植株各部位养分含量可以有效反映土壤供肥能力,为确定适宜施肥量提供依据[18]。本试验中成熟期各处理秸秆氮质量分数为10.45~10.97 g/kg、磷质量分数为2.01~2.45 g/kg,均在水稻正常的养分含量范围内[19],说明在常规施肥基础上氮肥减施10%~30%、磷肥减施40%可以保证水稻植株所需养分供给。本研究中,4种施肥模式籽粒产量为8 180.7~8 477.8 kg/hm2,高于当地单季水稻的平均籽粒产量[20]。与常规施肥模式相比,3种优化施肥模式产量增加2.80%~3.63%,其中25%有机肥氮代替化肥施肥模式效果最好。本试验中籽粒产量结果说明:短期内在常规施肥基础上减少氮肥10%~40%施用可以保证单季稻产量,优化测土配方基础上有机肥部分替代化肥施肥模式中施用的有机肥料可以有效地持续向水稻提供所需养分,更有利于水稻植株养分积累与转移,从而保证籽粒产量,这和以往的研究结果[21-22]基本一致。

在自然降雨条件下,径流量及径流水氮磷浓度是影响作物生育期间养分径流流失的重要因素[23-24]。本试验水稻生育期稻田累积径流量差异不显著,王静等也有类似的报道[25]。第1次产流事件中,TFM模式下径流水总氮浓度与常规施肥处理相比降低了33.60%,总磷浓度降低了34.21%。同时,TFM模式下稻田径流水总氮、铵态氮、总磷、无机磷均低于TF,有机氮肥施入田中需要经过微生物降解作用,养分释放速度较化肥更慢,等量有机肥代替化肥施用时,可以有效降低稻田水中总氮、铵态氮、总磷、无机磷浓度,从而减少农田氮磷流失量。姜利红等的研究也表明,有机物料代替20%氮肥处理能够降低径流水中氮素平均含量[13],本试验结果与此基本一致。

有机肥料配合无机肥料施用能够降低稻田氮磷流失负荷[26-28]。本试验中,水稻生育期间稻田径流水总氮累积流失量为1 879.5~2 817.0 g/hm2,总磷累积流失量为43.0~61.0 g/hm2,与梁新强等的研究结果[29]相似。常规推荐施肥、优化测土配方施肥、优化测土配方基础上有机肥部分替代化肥施肥模式中,径流水总氮累积流失量与常规施肥相比分别减少了2.75%、14.15%和33.28%,总磷累积流失量分别减少了19.02%、21.31%和29.51%,TFM模式下稻田氮磷流失显著低于常规施肥,同时TFM处理控制径流氮磷流失效果要好于等量氮肥水平下的测土配方施肥(TF)处理,这与前人的研究结果[29]相符。本试验结果可知,有机无机肥配施模式能显著减少稻田的氮磷流失量,主要是通过降低径流水中总氮、铵态氮、总磷、无机磷浓度来实现的。

肥料施用量是影响稻田土壤和径流水氮磷含量的重要因素之一。本次试验中,稻田径流水氮磷含量与土壤水溶性氮磷含量呈极显著正相关,土壤中水溶性氮磷是径流水中各形态氮磷的主要来源。农田田面水和径流水氮磷含量会随施肥量的增加而增加,减少肥料用量会降低氮磷径流流失风险和流失量[30-31];石丽红等研究认为,稻田氮磷径流流失量与肥料施用量呈极显著正相关[32]。由此可见,减少氮磷施用量可有效降低稻田氮磷径流损失,所以在实际生产中应避免单次施用大量氮磷肥料。

4 结论

常规推荐施肥(CRF)、优化测土配方施肥(TF)、优化测土配方基础上有机肥部分替代化肥施肥(TFM)模式均可保证单季稻植株的正常营养水平,保证水稻的籽粒产量;均能显著减少稻田氮磷流失量,主要通过降低径流水中总氮、铵态氮、总磷、无机磷的含量实现。

土壤水溶性氮对径流水中氮素含量起到决定作用,实际生产中应避免一次性施用大量氮肥,以有效控制稻田径流氮素流失风险。优化测土配方基础上25%有机氮代替化肥氮施肥(TFM)模式在保证水稻正常养分吸收及产量的同时,控制氮磷径流流失的效果最佳,是一种兼具农业效益与环境效益的施肥模式,推荐的施肥方案为N 210 kg/hm2、P2O590 kg/hm2、K2O 120 kg/hm2,其中有机肥部分替代化肥的比例为25%。

猜你喜欢
产流铵态氮氮磷
产流及其研究进展
玻利维亚拟建新的氮磷钾肥料工厂
离子型稀土尾矿深层土壤剖面铵态氮污染特征及影响因素*
常规施肥与氮磷钾施肥对CX-80雪茄烟品质的影响
锰离子对引黄灌区不同质地土壤铵态氮吸附影响
不同坡面单元人工降雨产流试验与分析
不同质地土壤铵态氮吸附/解吸特征
不同盐碱化土壤对NH+4吸附特性研究
经验相关图法在洪水预报中的应用分析
退耕还林对黄家河产流影响浅析