激光诱导击穿光谱技术相关物理机制研究进展

2024-02-05 09:06刘瑞斌殷允嵩
中国光学 2024年1期
关键词:氩气谱线等离子体

刘瑞斌,殷允嵩

(北京理工大学 物理学院,北京 100081)

1 引言

激光诱导击穿光谱技术(LIBS)利用脉冲激光与物质相互作用产生等离子体,再通过对等离子体辐射光谱的分析,实现对物质所含元素的定性和定量分析。LIBS 技术因具有无需进行样品制备、可全元素实时快速分析、检测过程绿色安全无辐射等优点,已被广泛应用于生物医学[1-2]、工业应用[3-5]、文化遗产[6-7]和环境[8-10]等领域。在LIBS 技术应用中,激光与物质相互作用的机理研究至关重要。其是实际应用中相关设备优化、成本控制、提升量化分析精度的重要基石。通过对LIBS 技术中所涉及到的激光与物质相互作用的物理过程和机理的研究,能为LIBS 技术的应用提供理论支撑。很多研究者已经利用不同的技术手段对LIBS 中涉及到的激光与物质相互作用的物理过程和机理进行了深入的研究。在理论仿真方面,Bogarts A 等人[11]基于热传导和流体力学对纳秒激光烧蚀金属铜的过程进行了计算和仿真,计算发现烧蚀初期样品表面的温度和压力场分布是等离子体羽流后期膨胀的“初始条件”,同时,等离子体屏蔽效应对烧蚀过程同样具有不可忽视的影响;Vasantgadka N A 等人[12]利用有限元方法对纳秒脉冲激光烧蚀材料的深度进行了预测,计算过程详细考虑了激光能量的高斯分布、材料不同物理状态下的动态吸收系数、等离子体屏蔽效应对烧蚀结果的影响;Zhang Y 等人[13]在一维空间上综合考虑了等离子体羽流膨胀和热传导模型,仿真计算了纳秒脉冲激光对铝的烧蚀作用,并将计算结果和实验结果进行了对比;Wang Y D 等人[14]利用数值模拟方法对纳秒脉冲激光诱导出激波的时空演化过程进行了细致的研究,激光能量密度从3.4 J/CM2上升至4.3 J/CM2时,产生的冲击波峰值超压范围达到110 MPa~167 MPa。在实验方面,已有相关研究者通过时间分辨图像对激光烧蚀后等离子体的形成过程以及羽流形成过程给出了详细的说明[15-19]。为了提高LIBS 技术的分析能力,研究了实验参数(如脉冲能量、脉冲持续时间和激光波长等)对LIBS 定量分析技术的影响[20-26]。这些参数决定了激光与物质相互作用的效果以及所产生的等离子体的性质,随着激光能量的增加,某些金属元素的电子温度也在增加,其光谱强度增强的同时,背景辐射也在增加,且过大的能量可能会导致信号饱和,适得其反。对于高于等离子体形成阈值的能量,不同脉冲持续时间在发射线强度和寿命方面的区别较小。其中皮秒脉冲激发光相比纳秒脉冲激发光的激光诱导击穿光谱衰减的更快,同时具有较低的背景辐射。266 nm 的红外激光作用样品时,光谱的发射强度较低,烧蚀的质量较少。1 064 nm 的紫外激光辐照通常会产生一个更均匀的烧蚀坑,转化为更好的光谱信号,进而得到更高的精度。除此之外,Gottfried 等引入了“等离子体化学”的概念,通过激光诱导冲击波实验方法对等离子体内可能发生的化学反应进行研究,通过时间分辨光谱分析等离子体内部的化学反应过程[27]。但对于等离子体内部涉及到的化学反应动力学过程和内在演化的详细机制尚不清楚。一方面,由于热力学条件的变化范围很广,涉及从烧蚀开始时的高温高压环境到长时间烧蚀后热量与烧蚀表面的稀薄气体环境发生热量的相互传导,然而许多可能的物理化学过程只能在特定的压力和温度条件下获得,这使得在大气环境中,物质被烧蚀的化学动力学过程相当复杂。另一方面,激光诱导等离子体的参数(等离子体温度、等离子体密度等)在很大程度上取决于入射激光通量、激光波长、环境气体种类和环境压力等条件。因此在对等离子体研究的过程中,必须综合考虑短时间尺度(纳秒ns/皮秒ps/飞秒fs,1 ns=10-9s,1 ps=10-12s 1 fs=10-15s)、小空间尺寸下的(< 0.1 mm)等离子体特征参数及等离子体羽流和环境相互作用的演化过程。

本文简述了LIBS 基本原理,详细介绍了激光诱导等离子体的演化过程。随后总结了实验参数(如激光参数、实验环境参数、样品本身性质等)对激光与物质相互作用的物理机制的不同影响。为LIBS 技术进行广泛的实际应用提供了理论参考。

2 LIBS 的基本原理

LIBS 是指通过将一束具有高能量、窄脉宽(ns/fs)的脉冲激光聚焦到待测样品表面上,激光和样品发生相互作用后,产生由自由电子、高激发态原子、离子、分子组成的高温高密度等离子体,最后通过分析等离子体的辐射光谱实现对物质元素定性和定量分析。激光诱导等离子体的过程主要包括激光烧蚀样品、等离子体的产生、等离子体辐射和膨胀(伴随等离子体屏蔽)、等离子体冷却、湮灭。文献[28-30]对 LIBS 的基本原理和实验设置等方面进行了全面描述。

2.1 激光烧蚀

当高功率脉冲激光聚焦到材料表面时,激光与材料表面发生相互作用导致材料表面被烧蚀、去除。单位能量对待测物质质量的去除大小可以用激光的烧蚀率 ηabl(g/J)表示,其公式为:

式中,ρ(g/cm3)为材料的密度,δ(cm)为趋肤深度,Φ0(J/cm2)为激光通量。

激光烧蚀材料的过程非常复杂。该过程主要受激光参数、材料性质和等离子体化学等因素影响。在激光与材料作用的初始阶段,材料会吸收激光能量,在几个皮秒时间内,吸收光子能量后被激励的电子会将能量传递给晶格,通过晶格振动使热量在整个物质体系扩散,时间在10-11数量级范围内[31]。接触激光的区域温度迅速升高,当该部分温度达到熔点时,材料便立即熔化,该过程中吸收的光能主要转化为热能。随后材料继续吸收激光的能量,其表面将会气化。在激光脉宽时间内,激光辐照区域因样品气化和热对流而耗散热量的速率远远小于热量在此区域沉积的速率,因此在脉冲激光的持续作用下,能量在物质内部会不断地累积,当能量累积到一定程度时,初始等离子体便由物质表面的爆炸所形成。入射脉冲激光与这些喷溅出来的物质继续作用,溅射物质持续吸收激光能量发生再电离,进而形成更高电离度的等离子体[32]。

2.2 等离子体的产生

激光烧蚀过程中,激光脉冲持续对聚焦区域进行加热,靶材表面的温度迅速升高继而发生熔融、气化(相变),使得烧蚀的材料脱离靶面并迅速向外膨胀。材料发生气化后会继续吸收激光能量,当能量大于材料击穿阈值时,其中少部分粒子发生电离产生等离子体。从微观角度,等离子体的形成分为:初始状态等离子体的形成以及等离子体的雪崩电离[32]两个过程。初始等离子体的形成主要包括多光子吸收和逆韧致吸收两个过程。多光子吸收是指当高功率密度激光入射时,处于束缚态的电子将一次性地吸收多个光子能量而发生电离,电子从束缚态电离至自由态。通常在短波长激光和物质相互作用时,多光子电离占据主要优势[32]。该电离过程可以表示为:

其中,m是原子电离时所需要的光子个数。

受原子或离子势场的影响,处于自由态的电子在运动过程中动能会降低,同时产生辐射,这种现象称为韧致辐射。电子吸收激光能量并通过碰撞的形式将能量传递给离子或其他粒子的过程被称为逆韧致吸收。该过程可以表示为:

其中,αIB为逆韧致吸收系数,单位为(cm-1),Te为等离子体电子温度,Ne为等离子体电子密度,λ为激光波长。与多光子吸收不同,在激光波长较长时,逆韧致吸收效应逐渐占据主导地位[32]。

当初始的等离子体形成之后便会开始等离子体的雪崩电离过程。等离子体的雪崩电离是指当电子的动能超过电子的束缚能时,电子由束缚态变成了自由态,产生了新的自由电子。由于激光持续时间相对上述过程更长,新产生的自由电子又会被脉冲激光继续加热,继续获得动能,再次和束缚电子发生碰撞,在激光作用期间,持续不断的产生新电离的自由电子,周而复始。当激光能量较大,功率较高时,自由电子的密度将会以指数函数的趋势增加,形成雪崩式电离[32],用公式表示为:

2.3 等离子体继续膨胀

在等离子体和脉冲激光相互作用结束之后,等离子体内部包含大量的热电子、离子和原子。这些粒子会以冲击波的形式向四周快速膨胀[33],并且以椭球型沿着激光相反方向膨胀。在非真空环境下,当等离子体内的电离密度不断增加,直至达到某个临界值时,等离子体将会压缩周围环境气体产生冲击波。等离子体周围的环境气体也被一并加热,并向等离子体传递能量,等离子体吸收后继续膨胀,形成自维持的吸收过程[33]。

2.4 等离子体冷却和辐射

在等离子体形成的初始阶段,光谱中具有连续背景的韧致辐射和复合辐射占据主导地位。其中韧致辐射是电子从一个自由状态跃迁到另一个自由状态,即自由-自由跃迁。高能自由电子在运动过程中受到碰撞减速进而辐射出光子。而复合辐射是由自由电子状态到束缚电子状态转换的过程,自由电子在运动过程中被离子和原子捕获,以光子的形式释放能量[33]。高能脉冲激光与靶材作用期间,激光烧蚀区域是由固相、液相、气相、等离子体相自内而外组成的渐变区域。此外,在激光作用期间,等离子体能够持续吸收激光能量,从而一直维持高温高压的状态,使各相之间温度不会发生突变。当激光脉冲结束后,等离子体由于失去外界能量来源,将迅速与周围环境发生热交换,导致等离子体的高温高压状态无法继续维持。在液相区域,因为等离子体内部气压的急剧下降,会使得气化温度迅速降低,进而导致部分液相出现“过热”状态,随即发生剧烈的沸腾现象,而且在该过程中液相会迅速脱离靶材,该过程称为“相爆炸”。被激光烧蚀后,最终通常会在材料表面形成陨坑。这些陨坑主要是由一部分物质熔融、汽化后形成的,同时在陨坑周围仍然残留了部分熔融物[33]。陨坑的形状和大小由材料自身的特质、脉冲激光的性质以及所处的环境气体共同决定。

从光谱上看,韧致辐射、复合辐射等会产生连续背景辐射,只有当韧致和复合辐射强度逐渐减弱,才可以看到原子和分子在束缚能级间跃迁形成的离子、原子线状光谱。连续背景辐射持续时间达μs 量级,但衰减比较快,而分立的离子和原子谱线强度缓慢变强,一般需要几百ns,离子和原子分立谱线较强。在LIBS 实验中,通常会根据不同的样品,选择合适的延时时间和积分时间,从而得到较高信噪比的光谱。通过设置不同的延时时间可获得时间分辨的LIBS 光谱,进一步了解等离子体的演化过程,从而分析激光诱导等离子体内的物理演变规律及化学反应机制。

3 LIBS 的影响因素

3.1 双脉冲对LIBS 的影响

通过双脉冲激光诱导击穿光谱(Double Pulse LIBS)技术,可以有效地提升信号的强度和稳定性。这是一种比传统单脉冲激光诱导击穿光谱更有效的方法。

常用的双脉冲激光诱导击穿光谱实验的配置主要有两种:共线式(共轴式)双脉冲聚焦方式、正交式双脉冲聚焦方式。共线结构是指通过数字延时器等装置来控制两束脉冲激光的Q 开关或者调节两束激光的光程差,让两束激光以一定的时间间隔先后聚焦于样品表面,如图1(a)所示。正交结构是指通过延时器控制两束相互垂直的激光以特定时间间隔入射到样品表面,其中一束激光垂直入射并聚焦于样品表面,另一束激光平行入射并聚焦于样品表面。正交结构可细分为预激发结构(图1(b))和再加热结构(图1(c))两种:在预激发结构中,与样品表面平行的第一束激光首先聚焦于样品正上方,在样品表面产生等离子体的同时构建特殊的气体环境,形成预激发的效果,随后第二束激光垂直入射样品表面,两束激光相互作用产生等离子体;对于再加热结构,与样品垂直的激光经聚焦后率先到达样品表面与样品相互作用,产生等离子体,随后与样品平行的激光聚焦到样品表面对前一束激光诱导产生的等离子体进行再(二)次激发、再次加热。通常情况下,共线式结构能够更好地增强激光等离子体信号,但正交配置结构可以在信号稳定度和信噪比方面获得更好的效果。图1(d)为交叉型双脉冲激光配置,这种配置方式比较简单,且在实际实验中能更容易接收到等离子体光谱信号[32]。

图1 共线型、正交型以及交叉型双脉冲激光配置图[32](激光1 先入射激光2 后入射)(改编自文献[32])Fig.1 Collinear,orthogonal and crossed dual-pulse laser configurations[32] (laser 2 is incident after laser 1)(Adapted from Ref.[32])

在过去的十几年里,很多研究者们关注于对DP-LIBS 的改进和应用[34-41]。Mukherjee P 等人[42]将信号增强归因于等离子体羽流的膨胀和较高的等离子体温度。Rizwan A 等人[43]则通过控制延迟时间、两束脉冲的能量比得到了不同的等离子体电子温度。他们提出谱线增强是由于等离子体羽流的再加热效应以及延迟的第二束激光脉冲与稀薄介质中的目标物质的相互作用导致的[44-45]。Viskup R 等人[46]认为脉冲之间的延迟时间会导致等离子体膨胀动力学存在较大差异,这对谱线强度有剧烈的影响,他们认为最佳的延迟时间和基体的类型以及所研究单个元素谱线有关。Bhatt C R 等人[47]也认为在共线型的DP-LIBS 中两个激光脉冲之间的延时长短对光谱信号的增强和元素检出限的提高有很大影响。对于稀土元素Eu 和Pr 来说,发现预激发(图1(b))对信号增强有较大的贡献,这种增强并不依赖于第一束激光能量的大小。然而,对于Gd 和Y 而言,当第二激光能量保持不变时,第一脉冲的激光能量似乎决定了最佳的脉冲延迟时间。

Noll R 等人[48]和Angel S M 等人[41]将信号增强归因于等离子体羽流体积增大和材料烧蚀质量增加。而Sattmann R 等人[49]和Cristoforetti G 等人[50]则认为信号增强与延迟激光对等离子体的再加热和电子密度的变化有关。Gautier C 等人[51]提出了新的激光与等离子体相互作用机制。他们认为谱线增强不仅与第一束脉冲产生的等离子体吸收第二脉冲能量的能力有关,而且还与样品发射线的激发能级有关。

Heilbrunner H 等人[52]认为双脉冲LIBS 信号的增强除了与延迟脉冲激光对等离子体的再加热有关外,还受光斑大小的影响,光谱增强效果在光斑尺寸最大时最为明显。此外,他们还将谱线增强解释为:(1)在第一束激光脉冲作用下,样品表面上方产生“大气效应”(在样品表面上方形成一种瞬态的精细大气)。在这种大气中,第二激光脉冲的消光小于环境大气中的消光,第二等离子体由于具有更快的膨胀速度和更大的等离子体体积,因此其发射更强[53]。(2)在双脉冲激发的情况下,信号增强的原因是由于等离子体屏蔽降低,而不是因为第二激光脉冲对等离子体再加热。

Wang Y[54]等人探讨了共线构型fs/ns DP-LIBS的优点,认为fs 脉冲能够有效地耦合样品,而ns脉冲更适合对产生的等离子体进行再加热。这涉及到激光脉冲宽度对LIBS 技术的影响,将在下一个小节中进一步论述。

Cristoforetti G[55]利用不同压力下的正交双脉冲结构研究了Nd:YAG 激光在空气中烧蚀靶材铝的质量去除机理。在较低的激光通量下(低于30 J/cm2),激光的屏蔽效率不高,质量去除的机制主要是相爆炸。随着激光通量的增加,激光屏蔽效应开始增强,自吸收效应明显加强,开始逐渐占主导地位。在更高的激光通量(约315 J/cm2)下,激光屏蔽似乎发生饱和,烧蚀质量以蒸汽的形式增加,这可能是开始了一个新的相爆炸。在正交双脉冲结构中得到的线强度、雾化质量和坑体积的变化趋势与在较低气压下得到的结果相似,这证实了较低的激光屏蔽是导致强度变高和质量去除率增加的主要原因。

Prochazka D 等人[56]在正交型DP-LIBS 的基础上引入了第三个激光脉冲,第三束激光脉冲用于再加热,从而实现等离子体发射再增强。与DP-LIBS 相比,3P-LIBS (Triple-pulse LIBS)光谱信号的信背比(信号与背景比率)增加了5 倍,与常规SP-LIBS(Single-pulse LIBS)相比,信背比增加了228 倍。

Choi I 等人[57]发现在较长的时间延迟下,尽管等离子体温度有所升高,但谱线发射强度并没有增强,他们认为可能是因为第二束激光和等离子体之间的相互作用太弱,电子、光子的弛豫时间过长[58],无法重新加热等离子体导致的。除此之外,他们还发现等离子体电子密度会随着延迟时间的增加先迅速减小到最低值,然后再增大。他们认为这是由于第二束脉冲引起了冲击波的反射所导致的。首先,第一束脉冲激光产生的等离子体在空气环境中膨胀,而后第二束激光脉冲在第一束激光脉冲所产生的稀薄环境背景下开始作用[59-60],第二个激光脉冲产生的冲击波从第一个脉冲产生的等离子体与周围空气之间的界面反射回来,所以第二个等离子体比第一个等离子体膨胀得更快。这种后向反射冲击波压缩烧蚀物质导致电子密度增加,而电子密度的增加又会引起斯塔克效应,最终导致谱线宽度变宽。

3.2 脉冲宽度对LIBS 的影响

除了上述双脉冲方法会对LIBS 性能产生影响外,脉冲脉宽也在很大程度上影响LIBS 的分析性能。近年来,随着超短脉冲激光技术的飞速发展,超短脉冲激光也开始应用于LIBS 技术。在较短脉冲持续时间下(如皮秒(ps)、飞秒(fs)),材料的烧蚀过程与随后产生等离子体的物理机制与纳秒(ns)激光的物理机制有着明显不同。在低强度、短激光脉冲与金属靶相互作用的过程中,由于逆韧致吸收,激光能量被自由电子吸收,吸收的能量被用于电子系统内的热化、晶格能量的转移等方面。

Chicbkov B N 等人[61]从理论角度说明了在fs、ps 和ns 三种不同脉冲持续时间下低激光通量烧蚀金属靶的物理机制。对于fs 激光脉冲,激光脉冲烧蚀的时间尺度很短,因此烧蚀过程是直接从固体向蒸汽(或固体-等离子体)转变。在这种情况下,晶格在ps 时间尺度上加热,进而产生蒸汽和等离子体相,随后在真空中快速膨胀。在上述这些过程中,热传导进入目标的能量可以在一级近似下忽略,并不会产生熔融物质。对于ps 激光脉冲,激光烧蚀伴随着电子热传导和目标内熔融区的形成。烧蚀过程在表面也是一种直接的固体-蒸汽(或固体-等离子体)转变,但目标靶材内有液相的存在。在ns 激光脉冲烧蚀的情况下,由于脉冲激光与材料相互作用时间较长,热量有足够的时间转移到目标靶材,所以会产生相对较大的熔融材料层。

Von der linde D 等人[31]解释了在不同时间尺度下材料的激发特性。激光-固体的相互作用是多光子激发过程(因为非线性吸收的概率随着激光强度的增加而剧烈增加),即电子通过吸收光子从平衡态跃迁到某些激发态,激发机制可能是双光子或高阶多光子电子跃迁。最初的电子激发之后的变化是一个复杂的二次过程,最终结束于材料的最终结构变化。时间尺度如图2 所示。可见在10-14s 的时间尺度上发生了电子失相。该过程改变了激发态的相,但这并不会影响电子能量分布。在 10-13s 的时间尺度上是电子热化过程。在该过程中电子通过载流子的相互作用达到了准平衡。准平衡电子通过声子发射在10-13s 到10-12s的时间尺度上冷却。这一过程主要是声子-声子的弛豫过程。当时间到达10-12s 左右时会有一个明显的分界线来区分非热过程和热过程,即在激光能量沉积后的几ps 内,能量分布已足够接近热平衡。热化后,能量空间分布可以用温度分布来表征。之后在10-11s 的时间尺度上发生热扩散,这取决于材料的热输运系数和光学性质。当沉积的能量达到材料的熔点,材料便会开始由固态向液态转变。

图2 各种二级过程的时间尺度[31] (改编自文献[31])Fig.2 Time scale of the various secondary processes[31](Adapted from Ref.[31])

Elhassan A 等人[62]在fs 激光诱导青铜样品等离子体的时间分辨光谱中发现连续背景辐射出现在早期。这种连续发射是由于韧致辐射过程、电子与离子、原子的碰撞以及电子与离子的复合等造成的。之后由于等离子体的膨胀、冷却及其电子复合,使得连续背景辐射急剧下降,然后随着时间的增加,特征谱线强度也随之衰减。

用fs 和ns 脉冲激光激发得到的谱线强度与激光脉冲持续时间有直接的比例关系,但在相同的延迟时间下,ns 脉冲激光的谱线强度更大。此外,连续背景辐射在fs 脉冲激光下比在ns 脉冲激光下衰减得更快。这反映了在ns 脉冲激光下激光与物质喷射的等离子体羽流存在着相互作用。

对于等离子体的电子密度而言,在激光作用后的短时间内,ns 激光脉冲等离子体的电子密度相对fs 激光脉冲更大。但随着延迟时间的增加,ns 和fs 激光脉冲激发的等离子体电子密度均会下降。这种现象可以用等离子体冷却机制来解释,即对于fs 和ns 激光脉冲,在激光脉冲结束时,等离子体具有相同的冷却机制:(1)对周围空气和未烧蚀目标进行热传导;(2)等离子体膨胀并对周围空气做功;(3)辐射损失[63]。

与等离子体电子密度不同的是,fs 和ns 激光脉冲的等离子体温度随时间的变化情况大致相似,都随着延迟时间的增加而衰减。但是由于能量沉积机制[64],ns 脉冲激光产生的等离子体在早期开始时比fs 脉冲激光产生的等离子体温度高近2 倍,随后ns 激光脉冲所产生的等离子体温度快速衰减。此后,ns 脉冲激光产生的等离子体温度略高于fs 脉冲激光产生的等离子体温度。

Le Drogoff B 等人[63]研究了在5 ps 激光脉冲下镁铝合金所产生等离子体的时间分辨光谱。他们发现在早期(<50 ns),等离子体发射主要是连续背景辐射,随着延迟时间的增加,连续背景辐射会下降,原子特征谱线增强。

在相同的延迟时间下,等离子体温度会随激光脉冲宽度的增加而升高,文献[41]在黄铜以及钢样品中证明了这种趋势。而对于初始等离子体温度而言,脉冲宽度越大,初始温度越高。由于吸收的激光能量会完全沉积在物质中,不会发生进一步的等离子体加热效应,故等离子体的冷却时间也越长。他们对于等离子体冷却机制的解释与Elhassan A 等人[62]相同。

Emmert A 等人[65]使用纳秒Nd:YAG(1 064 nm)和飞秒Ti:蓝宝石(800 nm)激光脉冲对贫铀金属产生的光谱做了对比。在连续辐射背景下两者光谱均表现出尖锐的特征,并且fs-LIBS 光谱中特征谱线的信背比与ns-LIBS 光谱相似。即激发来自处于局部热力学平衡状态下的热等离子体。在fs-LIBS 光谱中,等离子体温度低,没有任何明显的连续等离子体发射,而且特征谱线出现较早,但寿命较短(200 ns)。实验中还发现,铀的发射对fs 脉冲的相位很敏感。这也是fs 脉冲非平衡激发的证据。

Rao E N 等人[68]利用fs 和ns 激光诱导击穿光谱研究了7 种新型爆炸分子(硝基咪唑)中 CN、C2和NH 分子和C、H、O 和N 原子在空气和氩气中的发射谱线。结果表明:在fs 光谱中分子发射谱线强度更强,而在ns 光谱中原子发射谱线强度更强。在氩气中,C2d的 Swan(碳分子斯簧)分子带强度最强;而在空气中,CN 的violet(紫外)分子带最强。同时,他们还对fs 和ns 激光脉冲诱导的等离子体进行了时间分辨光谱研究。研究发现:取代基的数量和位置对光谱中分子谱线强度的影响很大,尤其是硝基基团。除此之外,他们还发现C2的发射强度与分子中氧原子所占百分比之间存在很强的负相关性。总的来说,通过原子化/碎裂比可以作为鉴别高能材料性能的指标。

与Rao E N 等人[68]的研究类似,Kalam S A等人[69]为了研究不同官能团及其位置对LIBS 的影响,分别用fs-LIBS 和ns-LIBS 技术研究了6 种新型高能材料(HEMS)。所研究的HEMS 是三唑取代硝基芳烃衍生物的功能和结构异构体。在邻位和对位均有甲基 (-CH3)、甲氧基(-OCH3)和氨基(-NH2)。在ns-LIBS 和fs-LIBS 光谱中,都发现了C、H、N 和O 的原子线以及CN 和C2分子带。分子特征谱线在fs-LIBS 光谱中突出,而原子发射线在ns-LIBS 光谱中占主导地位。除此之外,他们还在空气中和氩气中通过fs-LIBS 和ns-LIBS 研究了CN 和C2分子的形成方式以及发射强度与C-C、C=C、C-N 和C=N 键和氧原子所占的百分比之间的相关性。结果表明:对于fs 脉冲,CN 分子主要是由天然CN 键形成的,而C2主要是由C-C,C=C 键的碎裂形成的。而在ns 脉冲烧蚀的情况下,CN 和C2是由其他二次激发源形成的。

Kalam S A 等人[69]还研究了HEMS 中CN/C2比值对光谱发射特征的影响,揭示了取代基类型和位置在光谱发射中的作用。负电性原子带走了电子,导致芳香环中电子密度减少,导致了较高的CN/C2比,增加了原子化的几率。此外,-NH2基团的位置对芳香环的稳定性起着至关重要的作用,当-NH2基团处于对位时会增加原子化的概率。

Serrano J 等人[70]通过fs-LIBS 和ns-LIBS 研究了激光脉冲持续时间对双原子自由基形成的影响。研究表明,与ns-LIBS 相比,fs-LIBS 更好地反映了分子固体的结构。激光脉冲持续时间决定了由蒸发分子所产生的碎片和原子。由fs 脉冲形成的大量的分子碎片直接与随后产生的双原子分子一起形成等离子体。而在ns 烧蚀状态下,只要分子的原子化优先于分子的渐进分解,原子重组和单个取代过程会主导双原子自由基等离子体的形成。因此,与ns-LIBS 相比,fs-LIBS 能更好地反映出双原子分子的发射强度与分子结构之间的相关性。

Suliyanti M M[71]研究了ns-LIBS 和fs-LIBS的激发机理和相应的发射光谱。(1)研究了Cu和Zn 在0.65 kPa 氩气环境中的fs-LIBS 和ns-LIBS 光谱。两者谱线发射种类相同,ns-LIBS 的谱线强度大约是fs-LIBS 的4 倍,但是ns-LIBS 的背景很高,这就导致ns-LIBS 中谱线的信噪比远低于fs-LIBS。(2)在不同的空气压力下,研究了Cu 板的谱线强度以及等离子体温度。对于Cu I 521.8 nm 和 Cu I 510.5 nm 谱 线,fs-LIBS 和ns-LIBS 的谱线强度随空气压力的变化趋势相似。两者等离子体温度随空气压力的变化趋势也相似。在相同压力下,ns-LIBS 的等离子体平均温度大于fs-LIBS 的等离子体平均温度。(3)研究了fs-LIBS 和ns-LIBS 等离子体冲击波前沿位置(R)随时间(T)的变化曲线,如图3 所示。结果表明,变化曲线遵循线性对数log(R)-log(T)关系,斜率均为0.4,满足Sedov 冲击波传播方程。

图3 等离子体冲击波前沿位置(R)随时间变化的Log(R)-log(T)图[71]Fig.3 Log(R)-log(T) plot of plasma shock front position(R) as a function of time[71].Reprinted with permission from Ref.[71] ©Journal of Laser Applications.

3.3 激光能量和波长对LIBS 的影响

对于LIBS 来说,实际传递给样品单位面积的能量比能量绝对值更重要。因此,用辐照度(irradiance,单位W/cm2)或激光通量(fluence,单位J/cm2)作为激光与物质相互作用的能量参数。下面介绍激光辐照度/激光通量对谱线强度、等离子体温度以及电子密度的影响。

Sarkar A 等人[72]研究了钒的4 种氧化物VO,V2O3,VO2,V2O5在不同延迟时间(0-8 μs)和能量(50 mJ、70 mJ 和95 mJ)下的等离子体电子数密度(Ne)和温度(Te)的关系。如图4、图5 所示,等离子体温度和电子数密度随延迟时间的增加逐渐减小并符合幂次定律。在同一延迟时间下,激光能量越高(50 mJ、70 mJ、95 mJ)Te和Ne越大。这是因为沉积的激光能量越大,电子获得的动能越大。激光能量越大时,Te随着延迟时间的增加而衰减的更快。这是因为更高的温度会导致等离子体膨胀的更快,从而导致等离子体温度下降的更快。与Te相反,激光能量越大时,Ne随着延迟时间的增加衰减的更慢。因为随着激光能量的增加,材料烧蚀量增加,Ne可以维持的时间更长。另外,对于所有氧化物来说,Ne的衰变速率比Te快得多。

图4 在激光能量为50 mJ、70 mJ 和95 mJ 时,VO 的等离子体温度(Te)与采集延时(td)的函数关系[72]Fig.4 The plasma temperature (Te) of VO as a function of acquisition time delay (td) when laser energy is 50 mJ,70 mJ,and 95 mJ [72].Reprinted with permission from Ref.[72]© Journal of Atomic and Molecular Physics.

图5 在激光能量为50 mJ、70 mJ 和95 mJ 时,V2O3 的电子密度(Ne)与采集延时(td)的函数关系[72]Fig.5 The electron density (Ne) of V2O3 as a function of acquisition time delay (td) when laser energy is 50 mJ,70 mJ,and 95 mJ[72].Reprinted with permission from Ref.[72] ©Journal of Atomic and Molecular Physics

Abdelhamid M 等人[73]设定透镜到样品的距离与透镜本身焦距之差为工作距离(WD),当样品表面在透镜焦距处时,WD=0;当WD>0 时,光束聚焦在样品内部。通过改变WD 研究激光辐照度对Ne和Te的影响。所用样品为铜衬底上沉积有1 µm 厚的金薄膜(Au/Cu 样品)。研究发现,随着工作距离的增加,激光辐照度的减小,Te和Ne几乎恒定。Luo W F 等人[74]采用532 nm 激光器研究了在激光辐照度逐渐增加的情况下标准铝合金标样的等离子体性质。发现,谱线强度、Ne和Te均随激光辐照度的增大而增大,直至饱和。这两种变化均可归因为等离子体屏蔽。Vadillo I M 等人[75]也通过测量各种金属箔样品的烧蚀速率研究了等离子体屏蔽效应。在较低激光通量下,平均烧蚀速率随着激光通量的增大而增大,而在较高激光通量下平均烧蚀速率达到阈值。Harilal S S 等人[76]已经证明在低辐照度下,逆轫致辐射引起的吸收可忽略,并且随激光辐照度的增加,吸收呈指数增长,在高辐照度下达到饱和。

Cristoforetti G 等人[77]证明了随着激光能量的增大,烧蚀现象经过了四个阶段。在第一阶段,激光能量足够烧蚀样品,但烧蚀样品的电离率很低,其温度不足以电离周围的气体。因此,这一阶段随着激光辐照度增加,LIBS 信号强度增强。之后是激光支持的爆轰过程[78]。如果这一过程在脉冲结束前到达,则剩余的那部分激光能量会因为等离子体屏蔽,而不能到达材料表面[79]。在这一阶段,主要吸收机制是逆轫致辐射。虽然等离子体温度随激光通量的增大而增大,但烧蚀质量会下降。这是因为部分激光能量被等离子体吸收,致使谱线强度也会有所下降。随着激光通量的增加,等离子屏蔽会持续作用。第三个阶段烧蚀质量会再次增加,但等离子温度基本不变。在该阶段,由于被吸收的激光能量主要用于维持等离子体膨胀,谱线强度会缓慢增加。过了第三个烧蚀阶段后等离子体屏蔽效应将达到饱和。随后进入第四个阶段,烧蚀坑体积继续增大且无明显规律,谱线强度和等离子体温度也在增大。

2.2.5 稳定性试验 按照“2.2.1”项下的方法制备供试品溶液,分别于0、2、4、6、8、12、24 h进样,精密吸取供试品溶液10 uL,注入液相色谱仪,记录葛根素的峰面积。结果平均峰面积为7 592 098.7,RSD值为0.25%,表明样品在24 h内稳定。

除上述激光通量对等离子体温度和电子密度的影响之外,Cirisan M 等人[80]还使用1 064 nm、0.974 J 纳秒激光器研究了Al、Ti 和Fe 样品等离子体的结构和动力学特征。发现:在较高辐照度时,烧蚀质量增加,等离子体内部由于具有更高的能量而呈半球状向外膨胀;而在辐照度较低时,等离子体则趋向于盘状。

等离子体的形貌及演化规律会受激光能量密度的影响,而其又会影响等离子体光谱的自吸收效应。薄而均匀的等离子体在一定程度上能降低自吸收效应,也能在一定程度上降低等离子体的波动性,提高光谱信号的稳定性[81]。

除激光能量外,激光波长也会对LIBS 性质产生影响。Hanif M 等人[82]使用波长为1 064 nm、最大能量为400 mJ 及波长为532 nm、最大能量为200 mJ 的激光器研究了Cu 样品的等离子体。结果发现:在不同波长条件下,在样品表面,Ne和Te均有最大值,而随着工作距离的增大,Te和Ne不断减小。这是因为靠近样品表面的区域会不断吸收激光辐射的能量。

使用不同波长激光所产生的等离子体,其吸收机制也存在一定区别。与使用波长为532 nm的激光激发样品相比,使用波长为1 064 nm 的激光激发样品所得到的等离子体光谱强度要更高。这是因为当入射激光波长为短波长时,多光子电离是产生等离子体的主要原因。当入射激光为长波长时,逆韧致吸收是产生等离子体的主要原因。多光子电离过程中入射的激光光子直接被电子吸收,产生电离,而逆韧致吸收过程中入射光子先转换为热能,导致原子发生剧烈碰撞,进而引起电离。

Dittrich K 和Wennrich R[83]也发现质量烧蚀率随激光波长的减小而增大。一般来说,紫外激光激发等离子体时具有较高的熔化效率,用紫外激光激发的等离子体光谱还有较低的背景辐射和更高的再现性[84-88]。使用红外激光激发等离子体,会有比较高的等离子体温度和电子密度以及较大的等离子体膨胀体积。这是因为红外激光更容易被等离子体吸收或与之发生作用。另外,使用红外光源时烧蚀通量(实现烧蚀单位面积所需最小能量)会更低[89-90]。对于金属来说,当激光波长减小时,金属材料表面反射系数R也会减小[91-92]。例如,对于金属Cu,激发波长为1 064 nm时反射系数为0.976;而当激发波长为266 nm 时,反射系数为0.336[92]。由此可知,金属在紫外激光激发时吸收的能量更多。

3.4 环境气体对LIBS 的影响

在LIBS 中,背景气体和压力会通过影响激光烧蚀、等离子体的膨胀、等离子体冷却等过程继而影响光谱的特征,如谱线强度和展宽等。

Lee Y I 等人[93-94]使用1 064 nm 的ns 脉冲激光研究了不同种类气体(氩气、氖气、氦气、氮气和空气等)及不同压力对激光烧蚀和等离子体发射的影响。其中,烧蚀效率在氦气中最高;烧蚀坑的体积在氩气背景下最小,烧蚀质量最低,但在200 hPa 压力下,氩气中的LIBS 强度最高。当背景压力降低到大气压以下时,不同背景气体下烧蚀坑的体积均会达到最小值。Lee Y I 等人[95-96]使用ns 脉冲研究了氩气、氖气和氦气背景下压力(1.33×103~101.32×103Pa)对LIBS 谱线的发射强度、自吸收效应和谱线展宽的影响。由于氩气的电离电位低于氦气和氖气,这会导致等离子体羽流中的电子密度更高,因此在氩气中谱线展宽会更宽。当压力从101.32×103Pa 降低到1.33×103Pa时,在空气和氩气背景下,谱线强度分别增加了7 倍和11 倍,但在氦气背景下并没有明显的增强。

还有一些研究者使用fs 和ns 激光研究了金属样品的等离子体性质。Aragón C 等人[97]在大气压下,分别在空气、氩气和氦气中使用ns 脉冲研究了钢样品的等离子体的电子密度和温度。氩气中等离子体温度和电子密度值最高,氦气中最低,并且在氦气中等离子体参数衰减得更快。Bashir S 等人[98]在氩气、空气和氦气条件下研究了金属Cd 的等离子体性质。结果发现在氩气中等离子体温度和电子密度均为最高,在空气中次之,氦气中最低。这是因为不同气体的热力学特征不同,等离子体对脉冲能量的吸收能力也会有所不同。例如在26.7 °C 时,由于氦气的导热率更大,因此在氦气环境下等离子体冷却的更快,导致等离子体温度最低。一般情况下,由于氩气导热性低,因此在氩气中谱线强度更强,等离子体温度更高。此外谱线强度、等离子体温度和电子数密度随着环境气体压力的升高还表现出先增加后减小的规律,这一规律与烧蚀材料无关。其原因在于:当环境压力较高时,等离子体中电子与背景气体原子的弹性碰撞频率增加,逆轫致辐射超过了自由电子能量的增长速率,导致高压下温度降低。Maretic V 等人[99]使用ns 和fs 激光脉冲在氩气环境下研究了黄铜样品LIBS 的性能。分别在40 hPa 和900 hPa 下进行了曲线校准,结果表明在40 hPa 下使用fs 脉冲,线性和精度结果最佳。

除此之外,还有一些研究者研究了不同环境气体对自吸收以及等离子体屏蔽效应的影响。Margetic V 等人[100]在空气和氩气环境下,研究了重晶石玻璃中Na 共振线线形随时间的变化关系。在早期,等离子体温度和电子密度很高,谱线展宽主要源于斯塔克效应。随着延迟时间的增加,中性原子电子数密度增加,谱线的强度比降低。氩气和空气谱线的区别在于:(1)在较长的延迟时间时,在氩气中电子数密度更大,但在空气中Na 共振线更宽;(2)随着延迟时间的增加,空气中出现自吸收而氩气中无自吸收。自吸收表明等离子体温度和电子数密度在空间中不均匀分布,等离子体外围吸收了等离子体内核的能量。而在氩气保护下等离子体温度分布更均匀,内核能量不易被边缘等离子体吸收,从而减少了自吸收效应。Wang S 等人[101]也研究了环境气体对自吸收的影响。他们在空气、氮气、氩气环境下,对比了Al 396.2 nm 处的谱线,发现在30 kPa 以下的压强,氩气环境自吸收明显,其次是空气,在氮气环境中自吸收最弱。

Gravel J F Y 等人[102]研究了黄铜样品在不同气体环境下的等离子体屏蔽效应,在薄黄铜片样品上穿孔所需要的激光照射次数与辐照度大小有关。当辐照度较小时,随着辐照度的增加,穿透样品所需激光照射数减少,即烧蚀速率与激光辐照度成比例,且不受环境气体的影响。当激光辐照度较大时,随着辐照度增加,因为在较高的辐照度下等离子体屏蔽增加,会使穿透样品所需激光照射数增加。此外,氩气和氦气曲线差异很大。对氩气来说,当辐照度大于8 GW/cm2时,几乎不可能穿透样品。因为氩气更容易被离化,激光能量会被离化的氩气等离子体吸收。因此,等离子体屏蔽效应与环境气体的电离能及电子数密度有关,氩气的电离能比氦气低,所以氩气更容易被电离,激光能量被电离的氩气等离子体吸收,其等离子体屏蔽效应也更明显。

3.5 靶材性质对LIBS 的影响

基体效应是影响LIBS 技术进行精准定量分析的主要因素之一。Aguilera J A 等人[103]在大气条件下,使用等离子体温度、电子密度、等离子体中粒子数总密度、等离子体的长度以及等离子体的垂直辐射面积等参数研究了空气中以Ni、Gu和Al 为基体的基体效应对LIBS 结果的影响。结果发现在只考虑金属样品时,基体效应对等离子体参数的影响很弱;但是对于物理性能差异较大的材料,等离子体参数的变化会更大。Yao SH CH 等人[104]为了探究基体效应对煤中元素进行定量检测的影响,将9 种不同的煤粉与不同比例的KBr 粘结剂混合后压制成片,研究了KBr 粘结剂配比对激光诱导等离子体的影响。结果显示,等离子体温度随着KBr 粘结剂浓度的增加而降低,当KBr 的质量分数为60%时,9 种不同煤样等离子体温度差异最小。

Viskupt R 等人[105]使用1 064 nm 脉冲激光研究了FeO 样品在粉末、粉末压片及烧结后3 种不同形态下的光谱强度和等离子体性质。结果发现,定性分析下光谱强度与样品形态无关。但是由于不同形态的样品压实程度不同,因此在激光作用后等离子体羽流动力学和从样品表面喷溅的粒子形态不同。粉末形态样品的等离子体羽流比其它两种形态下的等离子体羽流更加均匀,而且在粉末和压片形态下样品表面还会喷射出粒子和粒子团簇。Anzano I M 等人[106]也研究了样品在粉末或压制成片的形态下的基体效应。结果表明当激光作用在粒子直径大于100 nm 的粉末状样品上时,基体效应并不存在。Labutin T A 等人[107]也研究了Al-Li 合金和锂铁氧体样品硬度和等离子体参数之间的关系。结果发现样品的物理性质、结构以及组分都会对等离子体参数产生影响,并且烧蚀质量与硬度成反比。对于铁氧体等离子体温度的差别是由于它们的物理性质和结构不同,与样品组分的变化无关。而对于铝合金而言,它们的组分变化会引起硬度的变化,这两个因素都会影响等离子体的性质。

除基体效应外,靶材温度也会影响光谱强度和等离子体性质。SHAO J F 等人[108]用飞秒脉冲研究了温度在25 °C~200 °C 范围内的黄铜样品的时间分辨光谱。结果表明,光谱强度随着温度的升高而增强。Guo J 等人[109]测得Si(I) 在390.55 nm处250 °C 时的谱线强度是25 °C 时的1.5 倍,证明了增加靶材温度会使谱线强度增强。

这种规律是由以下3 种原因引起的:(1)样品表面反射率降低。在局部热力学平衡下原子谱线强度主要由烧蚀总质量和等离子体温度决定[110-111],但由于等离子体温度很高(~104K),所以靶材温度对等离子体温度的影响很小,因此最终谱线强度主要受最大烧蚀质量的影响[112]。影响最大烧蚀质量的主要因素是目标温度和样品表面的反射率。这是因为对于固定的脉冲激光能量,材料表面反射率与脉冲激光及样品表面的实际耦合能量具有一定的负线性关系,并且材料反射率随材料温度的升高而降低[50],因此材料温度越高反射率越低,脉冲激光与样品表面的实际耦合能量越大,烧蚀质量越大,原子谱线强度就越大。(2)烧蚀阈值降低。材料的烧蚀阈值随着样品温度的升高而降低,因此随着烧蚀质量增加,材料的原始内能增加。所以等离子体温度会升高[113]。(3)空气密度降低。样品周围的空气温度因为样品表面被加热而升高,导致周围的空气密度降低,使得空气中的粒子与等离子体的碰撞减少,能量损失减少,等离子体光谱强度增大。还有一些文献将谱线增强归因于等离子体羽流的膨胀动力学,通过增加样品温度改变了周围空气的流体动力学效应,从而改善等离子体羽流的膨胀[67,114-115]。

SHAO J F 等人[108]证明:随着靶材温度的升高,等离子体温度升高,电子密度降低。与低温样品相比,高温样品相当于进行了预热,故可以使喷射的等离子体温度升高,进而导致粒子内的碰撞更强,因此等离子体的电子温度会增加。而对于电子密度,由于空气密度与大气环境温度成反比[116],因此,当样品温度升高时,周围的空气密度减小,等离子体膨胀更加剧烈,所以等离子体电子密度减小。

3.6 等离子体寿命对LIBS 的影响

激光诱导样品产生的等离子体寿命通常在微秒量级,对其时间演化过程进行了解有利于优化信号采集。李捷等人[117]应用100 ns 光学门宽时间分辨率的I CCD,通过实验得到了等离子体的时间演化特性曲线,分析了激光作用固体样品后各待测元素的演化过程。Ca 393.4 nm 谱线在延时约800 ns 时强度达到最大,其后开始衰减。而Na 589.0 nm 谱线则在延时约1 200 ns 达到最大,随后开始衰减。

由于激光诱导产生的等离子体特性强烈依赖于周围压力。Choi S J 等人[118]研究了6 种不同的样品(C、Ni、Cu、Sn、Al、Zn)在不同压强条件下的等离子体寿命,在133.32 Pa 观察到等离子体寿命的最大值。在133.32 Pa 下观察到的特殊情况是除了碳以外,所有目标的寿命都随着压力的降低而均匀下降。由于等离子体快速膨胀,其寿命随着压力的降低而均匀下降。随着压力从133.32到1.33 Pa 持续降低,寿命也随之降低。在1.33 Pa以下,等离子体的寿命不再受压力变化的影响。其可能的原因是每个样品的等离子体寿命的最大值取决于等离子体冷却和屏蔽效应。

3.7 延时时间和积分时间对LIBS 的影响

在常规 LIBS 测量中,光谱采集的延迟时间是通过抑制连续辐射背景来优化信噪比的重要参数。Fu Y T 等人[119-120]表明等离子体形态在等离子体演化的早期阶段可重复,而在后期阶段可重复性要低得多。对于钛合金,LIBS 光谱信号首先在等离子体演化早期阶段会出现较高波动,在800 ns 的延迟时间附近可重复性最高,此后随着等离子体的不断演化,信号重复性变差。Ti II 332.945 nm 线的强度和 SNR 在1 µs 内随着延迟时间的增加而增加,在1 µs 后逐渐减小。而光谱强度的波动由每次发射的相对标准偏差(Relative Standard Deviation,RSD)表示,RSD 在 1 µs以内呈下降趋势,在 1 µs 后呈上升趋势。从光谱的角度来看,光谱采集的最佳时间窗口位于 1 µs左右的延迟时间。

王阳恩等人[121]利用激光诱导击穿光谱仪对GBW07716 合成灰岩标准样品进行测试,并分析了Ni I 305.432 nm、Ni I 313.411 nm,Ni I 351.505 nm 等3条谱线强度随延迟时间的变化情况。结果表明,谱线随延迟时间的变化趋势主要与能级寿命有关,而不是跃迁几率Aij。当延迟时间大于2 µs 时,由同一高能级辐射所产生的谱线随延迟时间的变化趋势相同,而从不同高能级跃迁到同一低能级的谱线随延迟时间的变化趋势不相同。

郑培超等人[122]利用1 064 nm 波长的调Q 纳秒级Nd:YAG 脉冲激光激发铝合金样品产生等离子体,利用ICCD 采集了不同延迟时间下的等离子体图像。发现:激光诱导所产生的铝合金等离子体的寿命大约为30 µs,等离子体呈现明显的分层结构,并且不同区域的面积和温度在等离子体的时间演化过程中呈现不同的特征。

Kyuseok 等人[123]通过时间分辨激光诱导击穿光谱研究了激光诱导铜等离子体中3 种发射线(510.55、515.32 和 521.82 nm)的谱线展宽机制。515.32 和 521.82 nm 的谱线随着延时时间的增加,线宽显著减小,而 510.55 nm 处的线宽略有减小。3 个过渡线的不同线展宽行为归因于发射过程中涉及的能级的斯塔克展宽和类里德堡原子特性。

当延时时间较短时,等离子体没有充分形成,所得到的光谱信号较小;而当延时时间过长时,等离子体可能因为散射或扩散而消失,同样会降低光谱信号的强度。因此,选择适当的延时时间可以获得更准确的光谱信息。

等离子体寿命的变化会影响光谱信号的宽度和强度。当等离子体寿命较短时,产生的光谱信号较窄且信号强度较弱;而当等离子体寿命较长时,产生的光谱信号将更宽且信号强度更大。

除延迟时间外,积分时间对光谱的强度和噪声也有直接影响。较短的积分时间可能会导致噪声增加;而较长的积分时间则会提高信号质量,使光谱信号的信噪比上升,但测量速度会降低。因此,需要在保证信号质量的前提下,选择适当的积分时间以平衡信号强度和测量速度。

综合来说,延时时间和积分时间的选择需要根据实验需要和测量条件进行综合考虑,以获得准确、可靠的光谱信息。LIBS 定量分析的影响因素以及受影响特性见表1。

表1 LIBS 定量分析性能的物理机制影响因素及受影响特性Tab.1 Influencing factors and affected properties of physical mechanisms for LIBS quantitative analysis performance

4 结论

本文综述了LIBS 技术的基本原理,在介绍等离子体演化过程的同时重点讨论了激光参数、环境、样品本身,等离子体寿命,延迟时间,积分时间等因素对LIBS 定量分析性能的影响物理机制,包括:

(1)在双脉冲不同配置方式下,谱线增强、等离子体特征变化的机理解释;

(2)不同的脉冲宽度对激光烧蚀样品的烧蚀机制、诱导出等离子体机制和在不同应用领域使用不同脉宽激光方面的区别;

(3)激光通量和波长对谱线强度、等离子体温度和电子密度的影响;

(4)在不同的背景气体和压力下,讨论了激光烧蚀、等离子体膨胀、等离子体冷却等过程,进而讨论了对光谱特征,如连续光谱、分立谱线强度和谱线展宽等的影响;

(5)在样品本身方面,讨论了基体效应、样品形态和样品温度对谱线强度和等离子体性质的影响;

(6)等离子体光谱采集时,可以结合待测样品的等离子体寿命,选择合适的延时时间和积分时间,以得到光谱最佳的信噪比。

目前,LIBS 技术在各个领域的应用越来越广泛,我们认为在LIBS 的发展道路上,对激光诱导等离子体物理机制的基础研究仍然至关重要,以上这些物理机制的研究对未来LIBS 技术的日臻成熟和大规模商业化应用提供了强有力的理论支撑。

猜你喜欢
氩气谱线等离子体
液氩贮槽顶部氩气回收系统的探讨
示范快堆主容器内氩气空间数值模拟
基于HITRAN光谱数据库的合并谱线测温仿真研究
连续磁活动对等离子体层演化的影响
基于低温等离子体修饰的PET/PVC浮选分离
企业车间氩气泄漏模拟
铁合金光谱谱线分离实验研究
等离子体种子处理技术介绍
锶原子光钟钟跃迁谱线探测中的程序控制
药芯焊丝GMAW电弧光谱的研究