改性生物炭对镉砷复合污染土壤的修复研究进展

2024-03-25 17:58孙远陈敏周育智丁佳敏周海牛经纬陈孝
江苏农业科学 2024年2期
关键词:生物炭钝化剂影响因素

孙远 陈敏 周育智 丁佳敏 周海 牛经纬 陈孝

摘要: 土壤镉砷复合污染已成为一个严重的环境问题,由于镉砷具有相反的化学性质,运用生物炭修复镉砷复合污染土壤效果不佳,而改性生物炭在修复镉砷复合污染土壤方面取得了显著的成果。本文介绍了生物炭制备的方法与理化性质,总结了生物炭修复单一镉、砷污染的效果与机理,并阐述了生物炭处理复合污染的不足和难点。重点综述了改性生物炭的制备方法及理化性质,改性生物炭修复土壤镉砷复合污染的影响因素,以及改性生物炭处理镉砷复合污染的效果与机理。与原始生物炭相比,改性生物炭对镉砷具有更高的吸附性能,在复合污染土壤修复中表现出明显优势。但是,改性生物炭的回收问题尚未完全解决,解吸再生和老化问题需要深入研究,改性生物炭仍具有广大的研究和发展前景。

关键词: 生物炭;钝化剂;镉砷复合污染;原位修复;影响因素;修复机理

中图分类号:X53  文献标志码:A

文章编号:1002-1302(2024)02-0001-10

重金属污染长期以来被视为人类健康的重大威胁,而镉、砷是国际公认的强毒性重金属[1],镉和砷主要通过大气沉降、工业活动和采矿作业等方式进入土壤环境。土壤中存在的镉、砷会通过食物链和食物网在生物体中累积,尤其是水稻等农作物中[2],人体吸收后会对神经、生殖、肌肉、骨骼等系统或器官产生巨大的伤害,并显著提升患癌风险[3]。施加生物炭是常用于处理土壤重金属污染的方法,生物炭具有巨大的比表面积、丰富的表面官能团、复杂微孔结构和强大的吸附能力,是由生物质在限氧条件下热解生成的[4],还具有改善土壤结构,增强土壤肥力等功能[5]。生物炭修复土壤重金属的能力来源于其独特的物理化学性质,复杂的孔隙结构和巨大的比表面积赋予了生物炭强大的物理吸附能力,而丰富的官能团则能络合重金属离子。原始生物炭对于阴离子重金属如砷的吸附效果欠佳,甚至会引起土壤中稳定态砷向活性态转化[6]。Chen等认为,生物炭对单一镉污染效果显著,而对镉砷复合污染修复效果有限[7-9]。镉砷复合污染在我国矿区、工业区和农业区土壤中广泛存在,迫于生物炭对镉砷复合污染的处理乏力,其改性工作受到研究者的广泛关注,为了修复土壤重金属污染,使用金属及金属氧化物、酸碱或有机化合物与生物炭结合,达到改变理化性质及同时固定镉砷的目的[10]。本文简要介绍生物炭的制备方法、对镉砷修复机理和生物炭修复镉砷复合污染的不足,并对近年来对改性生物炭制备方法、镉砷吸附效果和吸附机理的研究进展进行总结,对未来生物炭改性工作的发展具有借鉴意义。

1 镉砷复合污染土壤现状及其修复难点

1.1 镉砷复合污染土壤现状

全国范围内镉砷复合污染从总体分布来看,南方土壤污染重于北方,污染物含量从西北到东南,从东北到西南逐渐升高[11]。姚红胜等对云南省喀斯特区域土壤进行分析,发现研究区土壤Cd、As筛选值超标率分别为88.25%、60.98%,Cd、As平均值超過背景值[12]。卞馨怡等对上海市某工业园区土壤重金属污染状况进行调查,发现镉、砷在土壤中含量最大值分别为0.32、14.3 mg/kg[13]。长三角经济带工业区镉砷土壤含量平均值分别为4.32、34.73 mg/kg,农业区镉砷土壤含量平均值分别为5.42、49.54 mg/kg[14]。2005—2022年全国工业矿业区土壤Cd、As含量相较于土壤背景值分别增加897.42%、171.29%[15]。综上,镉砷污染存在一定的相关性,在工业区和矿区复合污染尤为复杂,全国各地的镉砷污染正严重危害农田土壤、农作物和人类生命健康。

1.2 生物炭修复镉砷复合污染土壤难点

pH值和Eh值是影响镉砷在土壤中形态的重要因素,镉在土壤中以水溶态和非水溶态存在,水溶性镉主要以Cd2+形式存在,非水溶性镉主要以碳酸盐、磷酸盐和氢氧化物等沉淀形式存在。砷在土壤中主要以As(Ⅴ)(H2AsO-4/HAsO2-4)和As(Ⅲ) (H3AsO3/H2AsO-3)形式为主[16],pH值较低时土壤胶体表面官能团质子化,H+和Cd2+会竞争吸附点位,土壤胶体中正电荷量较高,此时土壤中阴离子As优先静电吸附。当pH值由低逐渐升高,土壤中无机矿物和有机质表面官能团去质子化,H+和Cd2+的竞争作用减弱,表面负电荷增加有利于土壤对镉离子的静电吸附。所以土壤pH值较低时,镉的迁移率和生物利用率较高[17],而砷与镉相反,pH值较高时迁移率和生物利用率较高[18],所以通过改变土壤pH值来同时固定镉砷难度很大。好氧干燥条件的土壤Eh值较高,砷一般固定在土壤中的铁氧化物、铝氧化物矿物中。淹水厌氧条件下的土壤Eh值较低,铁、铝氧化物还原溶解,固定的砷被释放,镉与土壤中有机质形成螯合物或生成硫化物沉淀。土壤pH值和Eh值变化呈显著的负相关,随着pH值的升高和Eh值的降低,镉从高生物利用率形态转变为低生物利用率形态, 砷从低生物利用率形态转变为高生物利用率形态[19-20]。此外,土壤中其他离子对镉砷吸附有一定的竞争作用,如Marzi等认为,钙质土壤中磷酸盐、柠檬酸盐和草酸盐的存在对砷的吸附有显著影响,其中磷酸盐的存在会显著降低土壤砷的吸附能力[21]。这是因为磷酸盐和砷酸盐的形态和化学性质类似,占据了大量吸附点位[22]。Cd2+也和Pb2+、Zn2+、Ni+、Cu2+存在不同程度的竞争吸附,从而降低生物炭对镉污染的吸附能力[23-24]。

综上,镉砷在对pH值和Eh因素的响应方面性质相反,且在多元污染体系土壤中各种离子干扰,使得镉砷复合污染土壤中镉砷的同步修复存在难点。

2 生物炭对镉、砷污染土壤的修复

2.1 生物炭制备方法

生物炭是一种碳质多孔固体材料,通过限氧条件下植物或动物生物质炭化形成,具有高度芳香化和高耐分解的特点[25]。生产生物炭有直接燃烧、气化、烘焙、热解、水热碳化等多种方式,由于产率和空气污染水平等条件的限制,热解逐渐成为生产生物炭的主要方法[26]。热解是在隔绝空气或供给少量空气的条件下,通过热化学转换,将生物质转变成为木炭、液体和气体等低分子物质的过程,主要有快速热解和慢速热解2种方法[27](表1)。

2.2 生物炭理化性质

生物炭的原料和热解温度决定了生物炭的理化性质,如pH值、阳离子交换容量、比表面积、平均孔径、有机碳含量和表面官能團[32]。生物质热解后碱性组分和无机矿物留在生物炭中,有机酸等挥发,所以大部分生物炭呈碱性[33]。生物炭原料中的木质纤维素占比决定了材料中微孔的结构和比表面积,比表面积在一定温度范围内随热解温度的升高而增大[34]。在热解过程中原料中的纤维素和半纤维素有助于形成含氧官能团(—OH,—COOH,—C—O—,—COOR),且生物炭表面官能团的数量与热解温度密切相关,随着热解温度升高,总官能团数量和密度下降[35](表2)。

2.3 生物炭修复镉、砷污染土壤机理

2.3.1 镉污染土壤修复机理

常见的修复镉污染土壤的机理包括静电吸引、离子交换、表面络合、沉淀和共沉淀。生物炭掺入土壤中后土壤中负电荷增加,带有正电荷的Cd2+被生物炭吸引,降低了镉的生物利用度[41]。生物炭表面官能团中的阳离子和土壤溶液中的镉离子进行离子交换,有研究发现,水葫芦生物炭吸附后释放的阳离子(K+、Ca2+、Na+、Mg2+)总量几乎等于被吸附的镉的总量[42]。表明离子交换是生物炭吸附镉的主要机理之一。由于生物炭表面存在许多官能团,如羧基、羰基和羟基等,因此很容易在重金属和这些基团间形成络合物[43]。Chen等对污泥生物炭吸附镉前后的FTIR光谱进行比较,发现羧基的峰值 发生了显著变化,表明与含氧官能团的络合是镉吸附的重要机理[7]。此外,当生物炭中可溶性盐的浓度较高时,沉淀也是镉吸附的机理之一。Xu等在350 ℃条件下制备的牛粪生物炭中可溶性碳酸盐和磷酸盐浓度较高,生物炭表面吸附的镉有88%是因为生成碳酸盐和磷酸盐沉淀[44]。

2.3.2 砷污染土壤修复机理

在有氧环境下,砷主要以As(Ⅴ)形式存在,在厌氧环境下,As(Ⅴ)易被还原成毒性更强的As(Ⅲ),Su等观察到水稻长期淹水情况下,植株中积累了过量的砷,并经过试验发现砷酸盐处理的水稻汁液中84%的总砷为亚砷酸盐[45]。土壤的厌氧条件导致铁、锰、铝氧化物/氢氧化物矿物的还原溶解和其吸附的砷酸盐/亚砷酸盐的释放,生物炭的加入不仅能物理吸附和络合砷,还可以减少淹水土壤中Fe(Ⅲ)还原细菌的丰度,减少了铁氧化物/氢氧化物矿物的还原溶解,有利于砷的固定[46]。络合作用是生物炭吸附砷的主要机理,Samsuri等比较了来自空果束和稻壳的2种生物炭之间的As(Ⅴ)和As(Ⅲ)吸附。空果束生物炭虽然比表面积小于稻壳生物炭,但是空果束生物炭表面官能团浓度更高,而2种生物炭吸附砷的能力相似[47],说明官能团络合是吸附的主要机制。生物炭表面含氧官能团的浓度与热解温度有关,当热解温度较高时,含氧官能团数量减少[35],Wang等测量了4种材料在不同温度下(300、450、600 ℃)12种生物炭的吸附性能,发现As(Ⅴ)吸附量通常随着热解温度上升而降低[48],这也证明官能团络合作用对吸附砷的重要性。除络合作用外,静电相互作用是生物炭吸附As(Ⅴ)的另一个重要机制。存在于生物炭表面的各种官能团往往根据土壤pH值被质子化,从而改变生物炭的表面电荷。当pH值小于pHpzc时,生物炭表面带正电荷,此时对As(Ⅴ)的静电吸附力较强[49]。

3 改性生物炭对镉砷复合污染土壤的修复

3.1 生物炭修复镉砷复合污染存在的问题

由于镉和砷在土壤中的生化性质通常相反,生物炭对镉和砷通常会不一致转化,即一种重金属的固定会导致另一种重金属迁移,或对其他重金属几乎没有影响[50]。相对于砷,生物炭可以更加有效地降低镉的生物有效性。生物炭的施加会使土壤pH值提高,增加土壤的净负电荷和阳离子交换点位,有利于静电吸附和阳离子交换,从而大大降低镉的迁移率和生物有效性[51]。但是土壤pH值的增加会促进土壤As的释放,Wu等发现土壤pH值的增加导致材料表面与As阴离子之间的静电斥力增强,使得As在土壤中的迁移率升高[52]。此外,Guo等研究发现,随着土壤pH值的增加,OH—浓度的升高导致OH—与As阴离子之间的竞争吸附增强,存在于铁氧化物/氢氧化物中的部分As可以被OH—取代,导致As的生物利用度增加[53]。土壤中的As常吸附于Fe(Ⅲ)矿物中,可以随矿物的还原溶解释放,由As(Ⅴ)还原转化为As(Ⅲ),而As(Ⅲ)的生物毒性和迁移能力都强于As(Ⅴ)[22]。有研究认为,生物炭可作为细菌和Fe(Ⅲ)矿物之间的电子穿梭体促进Fe还原微生物生长[54],易导致Fe(Ⅲ)矿物还原溶解及As(Ⅲ)的释放。生物炭的加入也会显著增加异化金属还原菌的丰度,使Geobacter、Anaeromyxobacter、Rhizobium 和 Balneimonas等菌种占优势[55],上述菌种已被证明有利于As和Fe的活化[56]。Wang等对是否加入生物炭2组水稻土壤进行基因检测,发现生物炭组arrA、arsC、arsM基因均显著增加,其中arsC基因最丰富,这也说明生物炭促进了砷还原菌的生长[57]。

由于生物炭难以满足同时修复镉砷污染的要求,迫切需要对生物炭进行改性工作,改变生物炭的部分理化性质,增强其吸附性能,以达到修复镉砷复合污染的目的。

3.2 生物炭改性

普通生物炭具有强度低、易碎、修复土壤后难以回收利用的特点,其表面积、孔隙和吸附点位等条件,也无法满足复杂的重金属污染土壤的要求,所以为了实现高效修复土壤并回收利用,国内外研究者都进行了生物炭改性的工作。改性生物炭的方法包括酸性改性、碱性改性、氧化剂改性和负载金属等[58]。

不同生物炭类型的主要官能团也不同,不同改性方法也会产生不同的官能团。酸性改性导致其表面产生大量酸性官能团,疏水性降低,同时增加了极性有利于溶液中的有机和无机污染的化学吸附。与酸改性生物炭相比,碱性处理产生更大的表面积,具有更高的H/C、N/C和较低的O/C,这意味着更高的表面芳香度和更低的亲水性[59]。金属改性能够在生物炭表面附着金属氧化物并产生新官能团,提供更多的吸附点位(表3)。

一般来说,比表面积和微孔体积越大,生物炭的物理吸附能力就越强。生物炭的比表面积通常会随着改性而增加,有时也有例外,改性后比表面积小于原生物炭,Lee等对3种生物炭(稻草、木质、混合物)进行了酸性、碱性、氧化、锰氧化物和铁氧化物5种改性,发现某几种组合表面积反而下降了,是因为化学处理导致微孔体积减小,孔隙扩大、孔壁破坏、孔隙结构破坏[64]。但是改性生物炭拥有更多的官能团和吸附点位,络合作用将起到更大作用。如今,纳米材料改性正成为热门研究方向,Zhang等合成了生物炭复合微纳米α-MnO2材料,该材料表面积是普通生物炭的7.5~13.5倍,对 As(Ⅲ,Ⅴ) 的去除能力比普通生物炭高5.0~13.0倍[65]。 Zhang等制备的纳米氧化铁改性生物炭,分别降低水稻根系和茎叶镉迁移因子84.7%、80.0%[66]。

修复镉砷复合土壤污染多使用负载金属法改性生物炭,铁是最常用的负载金属,因为铁氧化物能有效吸附砷,克服生物炭对砷吸附困难的缺点。几种铁改性生物炭修复镉砷复合污染土壤的制备原料、方法和修复目标见表4。

3.3 改性生物炭修复镉砷复合污染土壤的影响因素

3.3.1 pH值

pH值是影响修复效果的主要因素之一,改性生物炭的添加往往会增加土壤的pH值,导致稳定态As迁移转化,同时固定非稳定态Cd[72]。Wu等制备的钙基磁性生物炭在低pH值条件下表面质子化使其带正电,由于静电排斥难以吸附Cd(Ⅱ),且因为表面铁氧化物溶解,导致As(Ⅲ)的去除率也很低[73]。Xiao等研究发现,当pH值pHpzc值时生物炭表面带负电荷。较高的pH值有利于吸附剂的酚类、羟基、羧基和其他酸性官能团的去质子化,在材料的表面产生了负电荷位点,进而增加其对Cd(Ⅱ)离子的吸引力,但会排斥As(Ⅲ)离子[74]。

3.3.2 Eh值

氧化还原电位是镉砷在土壤中形态的主要影响因素,镉、砷对Eh变化的响应相反[19,75]。Honma等认为, 土壤中 总溶解砷随着Eh的 增加而急速下降,相反总溶解镉随着Eh值的增加而显著增加[76]。Yao等认为,镉的生物利用度与Eh值呈正相关,而砷的生物利用度与Eh值呈负相关[77]。一般生物炭加入土壤后pH值升高Eh值降低,铁氧化物/氢氧化物矿物溶解,砷的迁移率和生物利用率升高,而有效镉的浓度降低。有研究指出,在还原条件下,铁改性生物炭携带的外源铁可以被还原为Fe2+,并和As(Ⅲ)形成Fe-As-DOC络合物,起到固定移动性砷的作用[78]。

3.3.3 生物炭用量

生物炭的用量也是修复效果的影响因素之一[79],Li等制备的镁铝改性生物炭,去除效率随投加量增加而增加,但不选择效果最好的3%投加量,而选择2%作为土壤培养试验的投加量[80]。生物炭投加过多会导致土壤pH值和EC值增加,且大量生物炭会吸附土壤中的营养物质,抑制植物生长。适量的生物炭已能提供足够的吸附点位,不需要过量投加,实际运用时应对土壤背景值和改性生物炭吸附能力进行综合考量,并考虑经济成本来判断投加量。

3.3.4 微生物群落

微生物被认为是影响镉砷形态的重要因子,可以通过表面羟基、羧基等官能团参与重金属的络合[81],也可以将重金属离子运输到细胞中,通过呼吸作用固定和转化,将重金属形态从可交换态转变为有机结合和残渣态[82]。如耐镉菌可以通过Cd结合蛋白吸收、沉淀等机制降低土壤中有效镉[83],刘玉玲等通过Delftia sp. B9菌种负载生物炭有效降低了土壤中有效态砷、铁型砷和铝型砷,使其向残渣态转化[84]。同时也存在不利于镉砷修复的微生物,如在植物根部组织中发现的外生菌根真菌淡黄曲霉菌(Paxillus involutus)能提高Cd的植物利用度22%[85],异化金属还原菌会还原溶解铁锰氧化物导致砷释放[55]。

3.4 改性生物炭修复镉砷复合污染土壤效果与机理

同时有效修复镉砷污染是研究的主要难题,在某些环境下生物炭修复镉污染的能力甚至强于改性生物炭,却无法有效控制砷的迁移,运用改性生物炭同时降低重金属在土壤中的有效浓度和植物中的累积是关键。相对于实验室模拟的环境,被污染的土壤现场环境更加复杂,修复污染土壤的效果还有待考量。

由表5可知,金属改性方法中铁改性生物炭已成为大多数研究者修复镉砷土壤污染的有效选择。铁改性因其对砷的强力吸附能力和赋予生物炭磁性的能力近年来受到研究者的青睐,铁氧化物表面可以与As(Ⅲ)形成单齿或与As(Ⅴ)形成双齿螯合物[93],材料表面吸附的As(Ⅲ)还可以为Cd(Ⅱ) 提供新的吸附点位,形成三元表面配合物O- As(Ⅲ)-Cd(Ⅱ)[94],因吸附砷后负电荷量增加,也对镉的静电吸附有协同作用[95]。除铁改性外,其他金属如镁、铝、钙等改性也能显著提高镉砷的吸附效果,镁铝改性生物炭在吸附后表征中发现了Cd3(AsO4)2的存在,这归因于镉砷的共沉淀作用,同时Mg/Al-OH的含量下降,而Mg/Al-O含量上升,这表明含氧官能团的络合作用[80]。钙基磁性改性生物炭的施加顯著提高了土壤pH值和阳离子交换量,使镉的生物有效性显著降低,氧化铁则是为了应对土壤pH值增加后的As活化[67]。

酸性改性生物炭拥有大量的—COOH, 络合作用成为吸附的主要机理。如Guo等制备的HA/Fe- Mn氧化物负载生物炭在吸附Cd(Ⅱ)和As(Ⅴ)后,FT- IR表征发现羧基被消耗,形成了As-O/Cd-O[96]。而碱性改性则引入大量—OH和C C[97],也有利于镉砷与官能团的络合作用。有机化合物拥有羟基、羧基、巯基和氨基等基团,其改性能赋予生物炭丰富的官能团,壳聚糖是常用于生物炭改性的有机化合物[98],其表面的质子化N+可以通过静电作用吸引带负电荷的H2AsO-4或HAsO2-4,富含的—OH和O—C—O也能有效络合镉砷。

综上,生物炭改性方法及对应强化的机理见图1,主要包括:(1)静电吸引,生物炭的电负性有利于阳离子镉的吸附;(2)沉淀/共沉淀,生成磷酸盐、碳酸盐等沉淀或与砷结合生成Cd3(AsO4)2沉淀;(3)络合作用,与金属氧化物或含氧官能团络合;(4)阳离子交换,Cd2+可以与K+、Ca2+、Na+、Mg2+等阳离子交换。对砷污染的主要修复机理有:(1)静电吸引,pH值

4 结论与展望

本研究综述生物炭及改性生物炭修复镉砷复合污染土壤的相关研究进展,生物炭因镉砷对土壤pH值、Eh值响应不一致和离子干扰等原因对镉砷复合污染修复效果不良,所以通过不同改性方法使生物炭理化性质获得针对性的改变。改性对生物炭的比表面积、孔隙度、官能团密度等理化性质进行了改良,增强了非特异性吸附(物理吸附、静电吸附),且得益于改性生物炭表面丰富的官能团,络合作用大大增强,是镉砷吸附的主要机制,同时镉砷之间的协同 吸附也非常值得关注。对于镉砷复合污染土壤, 铁基改性生物炭修复效果最理想,铁氧化物对砷的强大吸附能力是主要原因。

生物炭/改性生物炭雖然拥有修复重金属污染的强大潜力,但仍存在以下几点不足之处,需要在之后的研究中解决。第一,改性生物炭修复镉砷复合污染土壤主要通过铁基改性,以达到外加磁场回收的目的,负载金属的形态和不同改性方法对修复效果的影响尚不明确,应进一步开展金属改性方法的对比研究,探究相对最优改性方法。第二,现有研究结果已证明改性生物炭在多轮解吸再生后仍有良好的吸附性能和磁力性能。但是在田间长期吸附后的生物炭存在老化问题(结构破坏、吸附性能降低),改性生物炭老化的相关研究尚存在较大空缺,重金属污染被改性生物炭吸附后在土壤中释放和迁移机制亟待阐明。第三,已有研究使用微生物负载生物炭进行土壤修复并取得良好的修复效果,而外源微生物影响改性生物炭修复土壤的作用机制尚不清楚,微生物和生物炭的协同作用对于镉砷形态转化仍需进一步研究。

参考文献:

[1] Ye X X,Li H Y,Zhang L G,et al. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil[J]. Ecotoxicology and Environmental Safety,2018,147:708-714.

[2]Gall J E,Boyd R S,Rajakaruna N.Transfer of heavy metals through terrestrial food webs:a review[J]. Environmental Monitoring and Assessment,2015,187(4):201.

[3]Parker G H,Gillie C E,Miller J V,et al. Human health risk assessment of arsenic,cadmium,lead,and mercury ingestion from baby foods[J]. Toxicology Reports,2022,9:238-249.

[4]Wang J L,Wang S Z.Preparation,modification and environmental application of biochar:a review[J]. Journal of Cleaner Production,2019,227:1002-1022.

[5]van Zwieten L,Kimber S,Morris S,et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil,2010,327(1):235-246.

[6]Beesley L,Inneh O S,Norton G J,et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution,2014,186:195-202.

[7]Chen T,Zhou Z Y,Han R,et al. Adsorption of cadmium by biochar derived from municipal sewage sludge:impact factors and adsorption mechanism[J]. Chemosphere,2015,134:286-293.

[8]Yang D,Zhang J W,Yang S Y,et al. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil[J]. Science of the Total Environment,2022,814:152798.

[9]程鈺莹,王嘉铭,王 平,等. 不同植物基生物炭对NH+4及 Cd(Ⅱ) 的吸附特性[J]. 中南林业科技大学学报,2022,42(3):180-192.

[10] Zhang K,Yi Y Q,Fang Z Q.Remediation of cadmium or arsenic contaminated water and soil by modified biochar:a review[J]. Chemosphere,2023,311:136914.

[11]王玉军,刘 存,周东美,等. 客观地看待我国耕地土壤环境质量的现状——关于《全国土壤污染状况调查公报》中有关问题的讨论和建议[J]. 农业环境科学学报,2014,33(8):1465-1473.

[12]姚红胜,杨涛明,和丽萍,等. 滇东喀斯特镉砷高背景值区耕地土壤重金属污染现状及潜在生态风险评估[J]. 西北林学院学报,2022,37(4):29-36.

[13]卞馨怡,彭流月. 上海某场地重金属污染现状及生态风险评价[J]. 广东化工,2022,49(11):167-169,172.

[14]张 义,周心劝,曾晓敏,等. 长江经济带工业区土壤重金属污染特征与评价[J]. 环境科学,2022,43(4):2062-2070.

[15]晏利晶,姜 淼,赵庆良,等. 基于Meta分析的中国工矿业场地土壤重金属污染评价[J]. 环境科学研究,2023,36(1):9-18.

[16]Zhu Y G,Xue X M,Kappler A,et al. Linking genes to microbial biogeochemical cycling:lessons from arsenic[J]. Environmental Science & Technology,2017,51(13):7326-7339.

[17]Markovi c  '  J,Jovi c  '  M,Smi c  ˇ iklas I,et al. Cadmium retention and distribution in contaminated soil:effects and interactions of soil properties,contamination level,aging time and in situ immobilization agents[J]. Ecotoxicology and Environmental Safety,2019,174:305-314.

[18]Wei M,Chen J J,Wang X W.Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA,oxalic and phosphoric acid:optimization conditions,removal effectiveness and ecological risks[J]. Chemosphere,2016,156:252-261.

[19]Shen B B,Wang X M,Zhang Y,et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J]. Science of the Total Environment,2020,711:135229.

[20]Yamaguchi N,Nakamura T,Dong D,et al. Arsenic release from flooded paddy soils is influenced by speciation,Eh,pH,and iron dissolution[J]. Chemosphere,2011,83(7):925-932.

[21]Marzi M,Towfighi H,Shahbazi K,et al. Study of arsenic adsorption in calcareous soils:competitive effect of phosphate,citrate,oxalate,humic acid and fulvic acid[J]. Journal of Environmental Management,2022,318:115532.

[22]Bakhat H F,Zia Z,Fahad S,et al. Arsenic uptake,accumulation and toxicity in rice plants:possible remedies for its detoxification:a review[J]. Environmental Science and Pollution Research,2017,24(10):9142-9158.

[23]El-Naggar A,Chang S X,Cai Y J,et al. Mechanistic insights into  the (im)mobilization of arsenic,cadmium,lead,and zinc in a multi- contaminated soil treated with different biochars[J]. Environment International,2021,156:106638.

[24]Meng Z W,Huang S,Wu J W,et al. Competitive adsorption and immobilization of Cd,Ni,and Cu by biochar in unsaturated soils under single-,binary-,and ternary-metal systems[J]. Journal of Hazardous Materials,2023,451:131106.

[25]Rangabhashiyam S,Balasubramanian P.The potential of lignocellulosic biomass precursors for biochar production:performance,mechanism and wastewater application:a review[J]. Industrial Crops and Products,2019,128:405-423.

[26]Amalina F,Razak A S A,Krishnan S,et al. Biochar production techniques utilizing biomass waste-derived materials and environmental applications:a review[J]. Journal of Hazardous Materials Advances,2022,7:100134.

[27]Al-Rumaihi A,Shahbaz M,McKay G,et al. A review of pyrolysis technologies and feedstock:a blending approach for plastic and biomass towards optimum biochar yield[J]. Renewable and Sustainable Energy Reviews,2022,167:112715.

[28]DeSisto W J,Hill N,Beis S H,et al. Fast pyrolysis of pine sawdust in a fluidized-bed reactor[J]. Energy & Fuels,2010,24(4):2642-2651.

[29]Elkhalifa S,Al-Ansari T,MacKey H R,et al. Food waste to biochars through pyrolysis:a review[J]. Resources,Conservation and Recycling,2019,144:310-320.

[30]Tripathi M,Sahu J N,Ganesan P.Effect of process parameters on production of biochar from biomass waste through pyrolysis:a review[J]. Renewable and Sustainable Energy Reviews,2016,55:467-481.

[31]Le H S,Chen W H,Ahmed S F,et al. Hydrothermal carbonization of food waste as sustainable energy conversion path[J]. Bioresource Technology,2022,363:127958.

[32]Mansoor S,Kour N,Manhas S,et al. Biochar as a tool for effective management of drought and heavy metal toxicity[J]. Chemosphere,2021,271:129458.

[33]Ghodake G S,Shinde S K,Kadam A A,et al. Review on biomass feedstocks,pyrolysis mechanism and physicochemical properties of biochar:state-of-the-art framework to speed up vision of circular bioeconomy[J]. Journal of Cleaner Production,2021,297:126645.

[34]姚 森,付濼檀,刘 闯,等. 高比表面积石墨化生物炭吸附性能研究[J]. 工程热物理学报,2021,42(10):2681-2685.

[35]Li C,Hayashi J I,Sun Y,et al. Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2021,155:105031.

[36]Wang Q Y,Yuan J,Yang X,et al. Responses of soil respiration and C sequestration efficiency to biochar amendment in maize field of Northeast China[J]. Soil and Tillage Research,2022,223:105442.

[37]Cen L,Cheng H G,Liu Q Y,et al. Arsenic release from arsenopyrite weathering in acid mine drainage:Kinetics,transformation,and effect of biochar[J]. Environment International,2022,170:107558.

[38]Das S K,Ghosh G K,Avasthe R.Ecotoxicological responses of weed biochar on seed germination and seedling growth in acidic soil[J]. Environmental Technology & Innovation,2020,20:101074.

[39]Oginni O,Singh K.Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars[J]. Journal of Environmental Chemical Engineering,2020,8(5):104169.

[40]Jia Y M,Hu Z Y,Mu J,et al. Preparation of biochar as a coating material for biochar-coated urea[J]. Science of the Total Environment,2020,731:139063.

[41]Peng X,Ye L L,Wang C H,et al. Temperature-and duration-dependent rice straw-derived biochar:characteristics and its effects on soil properties of an Ultisol in Southern China[J]. Soil and Tillage Research,2011,112(2):159-166.

[42]Zhang F,Wang X,Yin D X,et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)[J]. Journal of Environmental Management,2015,153:68-73.

[43]Cui L Q,Noerpel M R,Scheckel K G,et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International,2019,126:69-75.

[44]Xu X Y,Cao X D,Zhao L,et al. Removal of Cu,Zn,and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research,2013,20(1):358-368.

[45]Su Y H,McGrath S P,Zhao F J.Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant and Soil,2010,328(1):27-34.

[46]Kumarathilaka P,Bundschuh J,Seneweera S,et al. An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice[J]. Journal of Hazardous Materials,2021,405:124188.

[47]Samsuri A W,Sadegh-Zadeh F,Seh-Bardan B J. Adsorption of As(Ⅲ) and As(Ⅴ) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk[J]. Journal of Environmental Chemical Engineering,2013,1(4):981-988.

[48]Wang S S,Gao B,Zimmerman A R,et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J]. Bioresource Technology,2015,175:391-395.

[49]Vithanage M,Herath I,Joseph S,et al. Interaction of arsenic with biochar in soil and water:a critical review[J]. Carbon,2017,113:219-230.

[50]Houben D,Evrard L,Sonnet P.Mobility,bioavailability and pH-dependent leaching of cadmium,zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere,2013,92(11):1450-1457.

[51]Kim H S,Seo B H,Kuppusamy S,et al. A DOC coagulant,gypsum treatment can simultaneously reduce As,Cd and Pb uptake by medicinal plants grown in contaminated soil[J]. Ecotoxicology and Environmental Safety,2018,148:615-619.

[52]Wu J Z,Li Z T,Wang L,et al. A novel calcium-based magnetic biochar reduces the accumulation of As in grains of rice (Oryza sativa L.) in As-contaminated paddy soils[J]. Journal of Hazardous Materials,2020,394:122507.

[53]Guo X J,Du Y H,Chen F H,et al. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH):EXAFS study[J]. Journal of Colloid and Interface Science,2007,314(2):427-433.

[54]Kappler A,Wuestner M L,Ruecker A,et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters,2014,1(8):339-344.

[55]Chen Z,Wang Y P,Xia D,et al. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J]. Journal of Hazardous Materials,2016,311:20-29.

[56]Dong G W,Huang Y H,Yu Q Q,et al. Role of nanoparticles in controlling arsenic mobilization from sediments near a realgar tailing[J]. Environmental Science & Technology,2014,48(13):7469-7476.

[57]Wang N,Xue X M,Juhasz A L,et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution,2017,220:514-522.

[58]Li H B,Dong X L,da Silva E B,et al. Mechanisms of metal sorption by biochars:biochar characteristics and modifications[J]. Chemosphere,2017,178:466-478.

[59]Ahmed M B,Zhou J L,Ngo H H,et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource Technology,2016,214:836-851.

[60]Wang P P,Cao J L,Mao L G,et al. Effect of H3PO4-modified biochar on the fate of atrazine and remediation of bacterial community in atrazine-contaminated soil[J]. Science of the Total Environment,2022,851:158278.

[61]Liu M Y,Liu X S,Wu Z M,et al. Sulfur-modified Pleurotus ostreatus spent substrate biochar enhances the removal of cadmium in aqueous solution:characterization,performance,mechanism[J]. Journal of Environmental Management,2022,322:115900.

[62]Yusuff A S,Lala M A,Thompson-Yusuff K A,et al. ZnCl2-modified eucalyptus bark biochar as adsorbent:preparation,characterization and its application in adsorption of Cr(Ⅵ) from aqueous solutions[J]. South African Journal of Chemical Engineering,2022,42:138-145.

[63]Dobrzyńska J,Wysokińska A,Olchowski R. Raspberry stalks-derived biochar,magnetic biochar and urea modified magnetic biochar-synthesis,characterization and application for As(Ⅴ) and Cr(Ⅵ) removal from river water[J]. Journal of Environmental Management,2022,316:115260.

[64]Lee H S,Shin H S.Competitive adsorption of heavy metals onto modified biochars:comparison of biochar properties and modification methods[J]. Journal of Environmental Management,2021,299:113651.

[65]Zhang B,Han L F,Sun K,et al. Loading with micro-nanosized α-MnO2 efficiently promotes the removal of arsenite and arsenate by biochar derived from maize straw waste:dual role of deep oxidation and adsorption[J]. Science of the Total Environment,2022,807:150994.

[66]Zhang J Y,Zhou H,Zeng P,et al. Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root[J]. Chemosphere,2021,276:130212.

[67]Wu J Z,Li Z T,Huang D,et al. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils[J]. Journal of Hazardous Materials,2020,387:122010.

[68]Irshad M K,Noman A,Alhaithloul H A S,et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil[J]. Science of the Total Environment,2020,717:137086.

[69]Yang X,Wen E G,Ge C J,et al. Iron-modified phosphorus-and silicon-based biochars exhibited various influences on arsenic,cadmium,and lead accumulation in rice and enzyme activities in a paddy soil[J]. Journal of Hazardous Materials,2023,443:130203.

[70]Yang D,Yang S Y,Wang L,et al. Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation:insights on availability,bioaccumulation and health risk[J]. Environmental Pollution,2021,290:118054.

[71]Wan X M,Li C Y,Parikh S J.Simultaneous removal of arsenic,cadmium,and lead from soil by iron-modified magnetic biochar[J]. Environmental Pollution,2020,261:114157.

[72]Dai Z M,Zhang X J,Tang C,et al. Potential role of biochars in decreasing soil acidification-a critical review[J]. Science of the Total Environment,2017,581/582:601-611.

[73]Wu J Z,Huang D,Liu X M,et al. Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials,2018,348:10-19.

[74]Xiao J,Hu R,Chen G C. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(Ⅱ),Cu(Ⅱ) and Pb(Ⅱ)[J]. Journal of Hazardous Materials,2020,387:121980.

[75]Lu P,Zhu C. Arsenic Eh-pH diagrams at 25 ℃ and 1bar[J]. Environmental Earth Sciences,2011,62(8):1673-1683.

[76]Honma T,Ohba H,Kaneko-Kadokura A,et al. Optimal soil Eh,pH,and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology,2016,50(8):4178-4185.

[77]Yao B M,Wang S Q,Xie S T,et al. Optimal soil Eh,pH for simultaneous decrease of bioavailable Cd,As in co-contaminated paddy soil under water management strategies[J]. Science of the Total Environment,2022,806:151342.

[78]Yang X,Shaheen S M,Wang J X,et al. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques[J]. Journal of Hazardous Materials,2022,422:126808.

[79]Ibrahim E A,El-Sherbini M A A,Selim E M M. Effects of biochar on soil properties,heavy metal availability and uptake,and growth of summer squash grown in metal-contaminated soil[J]. Scientia Horticulturae,2022,301:111097.

[80]Li Q N,Liang W Y,Liu F,et al. Simultaneous immobilization of arsenic,lead and cadmium by magnesium-aluminum modified biochar in mining soil[J]. Journal of Environmental Management,2022,310:114792.

[81]Peng C,Zhao X,Ji X W,et al. Mixed bacteria passivation for the remediation of arsenic,lead,and cadmium:medium optimization and mechanisms[J]. Process Safety and Environmental Protection,2023,170:720-727.

[82]Nies D H. Heavy metal-resistant bacteria as extremophiles:molecular physiology and biotechnological use of Ralstonia sp. CH34[J]. Extremophiles,2000,4(2):77-82.

[83]Siripornadulsil S,Siripornadulsil W.Cadmium-tolerant bacteria reduce the uptake of cadmium in rice:potential for microbial bioremediation[J]. Ecotoxicology and Environmental Safety,2013,94:94-103.

[84]劉玉玲,朱虎成,彭 鸥,等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学,2020,41(9):4322-4332.

[85]Baum C,Hrynkiewicz K,Leinweber P,et al. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J]. Journal of Plant Nutrition and Soil Science,2006,169(4):516-522.

[86]Wen E G,Yang X,Chen H B,et al. Iron-modified biochar and water management regime-induced changes in plant growth,enzyme activities,and phytoavailability of arsenic,cadmium and lead in a paddy soil[J]. Journal of Hazardous Materials,2021,407:124344.

[87]Islam M S,Magid A S I A,Chen Y L,et al. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues[J]. Science of the Total Environment,2021,785:147163.

[88]Ji X W,Wan J,Wang X D,et al. Mixed bacteria-loaded biochar for the immobilization of arsenic,lead,and cadmium in a polluted soil system:effects and mechanisms[J]. Science of the Total Environment,2022,811:152112.

[89]Luo M K,Lin H,He Y H,et al. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil[J]. Science of the Total Environment,2020,717:137014.

[90]Irshad M K,Noman A,Wang Y,et al. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa L.)[J]. Environmental Research,2022,206:112238.

[91]楊京民,梁新然,姜 娜,等. 组配/改性材料对镉砷复合污染土壤的钝化修复[J]. 农业环境科学学报,2022,41(2):285-294.

[92]Wu P P,Li L,Wang J. Effects of Fe-loaded biochar on the bioavailability of arsenic and cadmium to lettuce growing in a mining contaminated soil[J]. Environmental Technology,2019,42:2145-2153.

[93]Ohtsuka T,Yamaguchi N,Makino T,et al. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp.OR-1[J]. Environmental Science & Technology,2013,47(12):6263-6271.

[94]Wang L,Li Z T,Wang Y,et al. Performance and mechanisms for remediation of Cd(Ⅱ) and As(Ⅲ) co-contamination by magnetic biochar-microbe biochemical composite:competition and synergy  effects[J]. Science of the Total Environment,2021,750:141672.

[95]Yang D,Wang L,Li Z T,et al. Simultaneous adsorption of Cd(Ⅱ) and As(Ⅲ) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems[J]. Science of the Total Environment,2020,708:134823.

[96]Guo J H,Yan C Z,Luo Z X,et al. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in  cadmium(Ⅱ) and arsenic(Ⅴ) adsorption[J]. Journal of Environmental  Sciences,2019,85:168-176.

[97]Nguyen V T,Nguyen T B,Huang C P,et al. Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions[J]. Journal of Water Process Engineering,2021,40:101908.

[98]Liu S B,Huang B Y,Chai L Y,et al. Enhancement of As(Ⅴ) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances,2017,7(18):10891-10900.

收 稿日期:2023-03-14

基金项目:国家自然科学基金(编号:41572333);安徽省绿色矿山工程研究中心开放基金课题。

作者简介:孙 远(2000—),男,安徽蚌埠人,硕士研究生,主要从事土壤重金属稳定化材料研究。E-mail:2022200067@aust.edu.cn。

通信作者:陈孝杨,博士,教授,主要从事矿山环境治理与场地污染修复研究。E-mail:chenxy@aust.edu.cn。

猜你喜欢
生物炭钝化剂影响因素
钝化剂对催化剂重金属污染的影响及其在催化装置的应用
不同组分与配比钝化剂对Pb、Cd污染土壤修复时效性研究
不同时间下钝化剂对污染土壤中Cd和Pb的钝化效果
生物炭的制备与表征比较研究
环卫工人生存状况的调查分析
农业生产性服务业需求影响因素分析
村级发展互助资金组织的运行效率研究
基于系统论的煤层瓦斯压力测定影响因素分析
生物炭的应用研究进展
钝化剂对河道底泥钝化作用的试验研究