保偏光纤制备及其参数测试原理

2024-04-03 12:08张雪莲刘永建
激光技术 2024年1期
关键词:包层纤芯折射率

张雪莲,杨 鹏,刘永建,宁 鼎

(中国电子科技集团公司第四十六研究所,天津 300220,中国)

0 引 言

光纤技术的快速发展促进了光纤测试新技术的研发和原有技术的拓展。保偏光纤中间品和成品检测是质量控制的必要步骤,而高效的测试系统可以保证产品性能,提高成品率,极大降低经济损失。因此,对光纤制备原理和参数测试原理两者结合的研究具有重要意义[1]。但过去的研究不够全面,且知识成果较陈旧。鉴于此,本文作者从光纤生产的角度出发,理论与实际并重,系统、完整地介绍了保偏光纤制备流程、测试的技术理论和实验结果,重点显现了光纤生产的最新技术。

1 保偏光纤制备工艺流程

图1为保偏光纤制备主要工艺流程图。主要分为保偏光纤预制棒和应力棒制备、酸处理、保偏光纤单模棒和应力棒拼接、清洗、接管、拉丝、保偏光纤终检等步骤。单模预制棒制备流程包括:采用改进的化学气相沉积(modified chemical vapor deposition,MCVD)工艺制备单模棒[2];单模预制棒芯包尺寸和折射率检验;套管;单模棒退火;包层结构加工和打孔;单模棒尺寸检验;单模棒酸处理清洗。将内径为19 cm、长度为70 cm的高纯石英反应管两端焊接支撑管和尾管,支撑管连接原料进料端,尾管连接尾气处理装置,然后固定在氢氧焰灯加热的车床上。氢氧焰灯沿着反应气体流动的方向缓慢移动,在氧化反应过程中,由于热泳效应[3],原料在主灯加热点反应,在热区下游沉积,当主灯向前移动时,疏松层进一步烧结,避免了疏松层颗粒脱落,玻璃化完成。接着氢氧焰灯快速移到起点,来回多次,直到反应管表面沉积所需的疏松层厚度。旋转的反应管在高温作用下变软,由于表面张力及内外压差,实现缩棒[4-5]。

图1 保偏光纤制备工艺流程图Fig.1 Flow sheet of PM fiber preparation process

由于反应管壁厚度的限制,实心光纤预制棒的芯包比无法满足设计需要,因此选择合适的纯石英套管,将预制棒放入套管内,在MCVD车床上使用氢氧焰灯熔融。若套管过大,熔融时由于重力作用预制棒会下坠,产生椭圆形的棒,同时熔融不能与预制棒完全结合,内部产生气泡,最终拉丝时形成缺陷,影响包层结构,降低光纤强度[6]。烧结后的单模预制棒需要放入高温退火炉中进行退火处理(恒温1200 ℃,2 h→降温500 ℃,5 h),以减少单模棒内部应力[7],去除残余的小气泡。

应力棒制备步骤为:采用MCVD工艺制备保偏光纤应力棒;应力棒尺寸和折射率检验;应力棒加工;酸处理。根据设计,沉积一定厚度的硼棒后进行缩棒,烧结透明后即得到保偏光纤应力棒。

根据设计的芯包比,计算出合适的包层和应力棒尺寸,将折射率剖面测试合格的预制棒和应力棒在磨床上进行钻孔、打磨,并加工成需要的包层结构和应力棒尺寸[8]。本设计中先用去离子水冲加工后的单模棒内孔和应力棒,分别放入体积比为1∶2∶40的氢氟酸、盐酸和高纯水的混合酸溶液内浸泡0.5 h~1 h,去除表面划痕、杂质,同时酸溶液对预制棒成分二氧化硅也有强烈的腐蚀性,因此严格控制好腐蚀的时间,可得到尺寸更精确的光纤预制棒和应力棒;再用热的去离子水冲洗多次,去除水溶性杂质后,进行单模棒与两应力棒的拼接,分别将两应力棒放入单模棒打好的两个孔内,使用氢氧焰火抛后熔烧,固定预制棒,烘烤至管内无水汽,即可进行拉丝[9]。

2 保偏光纤标准化测试原理

2.1 单模棒尺寸和折射率测试原理和结果

单模棒和应力棒使用光纤预制棒折射率测试仪,通过折射近场法利用动态空间滤光片测量由横向照射预制棒而产生的折射角,以此来测量预制棒的几何尺寸和折射率的分布。理想状态下光纤中的折射率n是轴对称的,用柱坐标(r,φ,z)分析,设光纤轴为z轴,光线方程的径向分量为:

(1)

式中:r为径向坐标(离轴距离);s为光线的几何路径。当光从折射率n0的介质入射到光纤的端面(z=0)r=r0和φ=0处,入射角为θ0,入射平面和光纤的夹角φ=φ0,折射角为θn,r0处的折射率为n(r0),由折射定律有n(r0)sinθn=n0sinθ0=sinθ0,则:

(2)

(3)

将式(2)、式(3)代入式(1),并对z积分可得:

z=

(4)

因此只要知道输入点坐标r0,测出折射角,就能得到折射率分布n(r)、r和z的关系。

理论上纤芯的折射率为阶跃和梯度分布,但对于实际的光纤,由于制造工艺的问题,光纤纤芯和包层的分界面,以及纤芯的折射率总有梯度变化。设计的光纤工作波长为1310 nm,而此梯度变化远小于工作波长,因此光纤芯/包分界面和纤芯中的折射率呈阶跃分布状态;纤芯的折射率可作为变折射率分布,折射率随离轴距离r的增加而不断改变,如式(5)、式(6)所示[10-12]:

(5)

(6)

式中:a是纤芯半径;n(0)是光纤轴上的折射率;n(r)为离轴距离r处的折射率;Δ为离轴距离r处相对折射率差。由图2可知,纤芯与包层分界处的折射率呈阶跃分布;当芯径离轴越远,折射率变化减小,锯齿状折射率分布差逐渐变短[13]。

图2 单模棒折射率差分布图Fig.2 Refractivity of single-mode preform

本文中使用MCVD工艺制作预制棒,从测试结果可以看出,预制棒纤芯直径为光纤内部的折射率分布均匀,外径为14.2 mm,包层直径为6.12 mm,纤芯直径为2.62 mm。精确的预制棒和应力区尺寸设计,引入几何对称的不均匀应力实现高双折射现象,消除应力对入射光偏振态的影响,从而保持保偏工作[14-15]。

2.2 保偏光纤关键参数的测试

2.2.1 模场直径和数值孔径的测试原理和结果 模场直径(mode-field diameter,MFD)设为D′,使用光分析测量仪搭建测试平台,通过远场扫描法确定;采用光纤横截面基模的电磁场强度分布度量,远场光强度为F2(θ),θ为远场角,则模场直径为:

(7)

测量时,2 m长待测光纤的一端接注入光源,另一端接光探测器,测量出被测光纤的远场光强,经数据处理后得出远场光强度F2(θ),再根据式(7)计算得到模场直径的大小,测试结果如图3所示。本文中的保偏光纤在入射工作波长λ=1310 nm时的模场直径D′=6.263 μm。

图3 保偏光纤远场扫描及模场直径和数值孔径测试结果图Fig.3 Far-field scanning of PM fiber and test results of MFD and NA

数值孔径(numerical aperture,NA)设为DNA,同样使用远场光强法测试,其表征光接收能力,只与光纤的折射率有关[16],即:

(8)

式中:n1为纤芯的折射率;n2为包层折射率。根据图2的折射率曲线可知:n1=n0+Δn12=1.45+0.017123=1.467,n2=n0-Δn02=1.45-0.000221=1.449。Δn02为匹配油与包层折射率差;Δn12为纤芯与包层折射率差,代入式(8),可得DNA=0.229,再将测试数值用最小二乘法拟合,扫描测试结果如图3所示,计算结果与测试结果一致。

2.2.2 特征参数测试原理和结果 表征光纤的几何特征参数是纤芯/包层直径、不圆度、同心误差,即几何尺寸的测量[17-18]。本文中使用视频灰度技术(传输近场)测试保偏光纤的各特征参数,实际光纤截面形状可能是非圆、非椭圆,这时需要对整个光纤截面进行分行扫描纤芯、应力区、包层、涂层半径,计算出半径边缘表,再将测量结果采用傅里叶拟合,得到所测量的数据,此处仅介绍纤芯和包层傅里叶拟合曲线,如图4所示。

光纤半径傅里叶计算公式如下:

(9)

式中:k是等角度间隔的中点值,k=2/T;T是光纤半径R(θ1)边界扫描数据表中极坐标(θ1,R)的等角度间隔值;A0是平均半径;Am和Bm是正弦和余弦的模(傅里叶级数的系数);n1是傅里叶级数中模Am和Bm的项数,通常10

(10)

则直径D为:

D=2A0

(11)

(12)

(13)

而不圆度Nc与最大和最小的轴半径Rmax、Rmin及A0有关,即:

(14)

如图4a所示,取极坐标(90°,39.718 μm),轴半径Rmax=39.896 μm,Rmin=39.534 μm,则包层直径为79.436 μm,将不圆度代入式(14),得到Nc=0.911%;如图4b所示,取极坐标(90°,3.067 μm),轴半径Rmax=3.098 μm,Rmin=3.064 μm,则纤芯直径为6.134 μm,不圆度Nc计算值为1.109%。

光分析测量系统得到的特征参数测试结果如表1所示。表中,rodC1和rodC2分别为结构对称的两个应力区,与上述计算结果一致,纤芯和包层不圆度低,同心误差小;保偏光纤实现了包层80 μm、内涂层135 μm、外涂层165 μm的精确几何尺寸设计(直径精度±0.7 μm),应力区结构对称、涂层均匀,满足技术指标要求。

表1 特征参数测试结果Table 1 Test results of characteristic parameters

2.3 高低温老化实验结果

拉制10 km的保偏光纤随机抽样5根,每根325 m,抽样率达16.25%,光纤弯曲直径为15 cm,进行高低温老化实验。先降温到-55 ℃,保持30 min,然后升温到80 ℃,保持30 min,最后回到常温25 ℃,变温速率为1.5 ℃/min[19]。实验后的衰减、串音、拍长测试[20-21]结果如表2所示。

表2 高低温实验结果Table 2 Test results of high and low temperature aging

从实验结果可知,极限温度时(低温-55 ℃,高温80 ℃)光纤功率衰减与常温相比有所增大,但功率衰减和串音变化幅度小,性能稳定。经高低温老化后,每根光纤截取2 m左右测试拍长,测试得到的拍长小,数值稳定,偏振性能良好。

3 国内数据对比

使用本测试系统对国内主要保偏光纤生产公司长2700 m、工作波长1310 nm、包涂直径80 μm/135 μm的保偏光纤进行损耗、拍长、串音测试,结果如表3所示。

表3 各公司参数测试结果Table 3 Test results of parameters of each company

从测试结果可以看出,本单位研制的光纤损耗低(0.42 dB/km)、拍长短(2.15 mm)、串音小(-24.9 dB),处于国内领先水平。后续将致力于减小拍长和损耗,进一步提升保偏光纤产品性能。

4 结 论

采用MCVD工艺制备的80 μm/135 μm型保偏光纤,其几何尺寸精确、结构均匀、具有优良的保偏性能;采用智能化的测试设备进行各项特征参数的测试,操作流程简单、测试结果高效准确,高低温实验结果证明光纤性能稳定,已广泛应用于实际生产中。

猜你喜欢
包层纤芯折射率
多芯激励下实际多芯光纤芯间串扰特性研究
低串扰低弯曲损耗环形芯少模多芯光纤的设计
聚变堆包层氚提取系统氦氢分离工艺研究进展
一种基于综资报表的纤芯资源能力评估方法
基于网格化的主干光缆纤芯配置模型
CFETR增殖包层极向分块对电磁载荷分布影响研究
不同角度包层光剥离的理论与实验研究
单轴晶体双折射率的测定
DEMO 堆包层第一壁热工水力优化分析研究
用Z-扫描技术研究量子点的非线性折射率