胶质瘤对替莫唑胺的耐药性机制研究进展

2017-01-12 19:49徐小珊涂艳阳
转化医学电子杂志 2017年7期
关键词:莫唑胺凝集素半乳糖

徐小珊,涂艳阳

(第四军医大学唐都医院实验外科,陕西西安710038)

·综述·

胶质瘤对替莫唑胺的耐药性机制研究进展

徐小珊,涂艳阳

(第四军医大学唐都医院实验外科,陕西西安710038)

目前,临床上针对胶质瘤的标准治疗方案为手术切除联合放化疗.替莫唑胺(TMZ)是一种新型的口服烷化剂,由于它能穿过血脑屏障到达患者的肿瘤病灶,发挥持久的治疗作用,被广泛用于胶质瘤的联合治疗.但是,由于替莫唑胺耐药性的产生,使得患者的生存期缩短,预后差.这种耐药性产生的机制十分复杂,主要包括DNA修复酶的激活,表皮生长因子受体(EGFR)和半乳凝素⁃1的过表达,p53,双微体 2(Mdm2),磷酸酶及张力蛋白同源基因(PTEN)以及miRNAs的异常调控.因此,探讨胶质瘤对替莫唑胺耐药性的产生机制以及如何有效地降低替莫唑胺耐药性,提高其疗效已经成为一个迫切需要解决的问题.本文将介绍GBM对TMZ耐药的主要机制,以期为胶质瘤的临床治疗提供充足的理论依据.

替莫唑胺;耐药性;胶质瘤

0 引言

胶质瘤是一种原发性脑肿瘤,其恶性程度高,约占所有原发性神经系统肿瘤的30%.致死率在35岁以下的全部恶性肿瘤中居第二位.其中,多形性胶质母细胞瘤(glioblastoma multiform,GBM)又占脑胶质瘤的一半以上,其恶性程度最高,每年的发病率约为百万分之五.因为GBM生长快速,侵袭性强,仅靠手术很难完全切除,这使得脑胶质瘤极易在术后复发[1-2].据有效数据统计,原发性的GBM多发于年龄大于55岁的患者,而继发性的GBM多发于年龄在55岁以下的患者,大多是由低级别的胶质瘤发展而来,只占GBM的10%左右[3].目前,对胶质瘤的治疗主要是手术切除联合放化疗,临床实践证明化疗可以有效提高恶性胶质瘤患者的生存时间与生存率.

替莫唑胺(temozolomide,TMZ)是一种口服烷化剂,能穿过血脑屏障直达病灶,是临床上化疗脑胶质瘤的一线常用药物之一[4].TMZ通过攻击肿瘤细胞的DNA,致使DNA烷基化受损,损伤的部位主要在N7,N3,O6位的鸟嘌呤以及O3位腺嘌呤上,DNA烷基化受损以后会产生交联,从而诱导癌细胞死亡[5].有研究表明,用TMZ治疗人脑胶质瘤的有效率约为45%[6].其中,脑胶质瘤对TMZ产生耐药性是导致化疗失败的最主要原因.

有文献研究[7]发现,脑胶质瘤产生TMZ耐药性不是由单一因素影响导致的,主要还包括DNA损伤修复,肿瘤细胞中促癌与抑癌基因的表达,化疗药物刺激后机体的应急反应以及药物对组织的渗透性等方面.本文主要针对近年来关于胶质瘤对TMZ耐药性产生的机制进行整理与综述.

1 TMZ的作用机制及结构

TMZ是一种仅在酸性pH下稳定存在的咪唑并四嗪类烷化剂[8].该药进入体循环以后快速转化为活性化合物3⁃甲基⁃(三嗪⁃1⁃)咪唑⁃4⁃甲酰胺(MTIC),MTIC随后与水反应生成5⁃氨基咪唑⁃4⁃甲酰胺(AIC)和高反应性甲基重氮阳离子(半衰期=0.4 s).该不稳定的阳离子可以通过甲基转移引发TMZ的细胞毒性反应[9].该细胞毒性反应主要发生在DNA分子N7,N3,O6位的鸟嘌呤以及O3位腺嘌呤上,虽然O6位上的烷基化只占所有甲基化总数的5%左右,但是它是引起TMZ产生细胞毒性的最主要原因[10].比较而言,N7,N3位上的烷基化相对频繁,约占烷基化总数的80%~85%和8%~18%[11].

2 脑胶质瘤对TMZ产生耐药性的机制

随着时间的推移,脑胶质瘤细胞对TMZ引起的损伤产生抵抗.这个抗性的产生与多个机制有关,如DNA修复机制,表皮生长因子受体(epidermal growth factor receptor,EGFR)的过表达,galectin⁃1和双微体2(murine double minute 2,Mdm2)的表达,p53突变以及磷酸酶和张力蛋白同源物(phosphatase and tensin homolog,PTEN)的表达.此外,TMZ对脑胶质瘤耐药性的产生与microRNA(miRNA)表达谱的改变也有一定的相关性.

2.1 DNA修复机制

2.1.1 MGMT GBM抗性的主要机理涉及甲基鸟嘌呤甲基转移酶(MGMT),一种修复DNA的酶.MGMT相对分子质量为22 kDa,它不仅可以除去连接到O6位鸟嘌呤中的甲基,而且可以除去其它烷基如乙基、异丙基和丁基[12].比较而言,MGMT除去甲基比其他烷基的速度要快得多[12].通过除去O6位鸟嘌呤上的甲基,可以直接修复由TMZ引起的病变[13].MGMT作为一种自杀式的修复酶,当其修复DNA上的甲基时,其145位催化中心上的半胱氨酸残基发生改变,从而导致其失活[14].随后MGMT被蛋白酶体降解,不再循环发挥作用[15].在不同类型的肿瘤中MGMT的表达水平有所不同[16].MGMT基因不常发生突变或缺失[17].MGMT的表达水平与MGMT启动子的甲基化相关.一些研究表明,MGMT的表达水平与多鸟嘌呤胞嘧啶(CpG)的甲基化概率成反比[17].MGMT基因的沉默是通过其CpG岛启动子上的高度甲基化来完成的[18].有数据统计,约有45%的新患GBM的患者呈现出MGMT启动子的甲基化,因此他们对TMZ的治疗反应更好[19].能够抑制MGMT活性的治疗分子如O6⁃苄基鸟嘌呤(O6⁃BG)和O6⁃(4⁃溴苯基)鸟嘌呤已被用于TMZ治疗前的预治疗中[11,20-21].在体内和体外实验的研究中,这些化合物通过与MGMT作用降低细胞中MGMT的含量,从而达到增强TMZ治疗活性的目的.它们主要通过将苄基或溴苯基共价转移到MGMT的活性半胱氨酸残基上,引起该酶的不可逆失活,从而发挥效应.尽管这些伪底物使得TMZ治疗的有效性提高,但它们对正常细胞,特别是骨髓细胞的高毒性导致这些分子不能被广泛应用在临床治疗中[19].

2.1.2 MMR DNA错配修复(MMR)是一个修复DNA合成过程中产生核苷酸碱基错配的系统[11].在没有MGMT存在的情况下,O6⁃MG持续存在,并且与胸腺嘧啶配对.所得到的O6⁃MG/T可以被MMR识别,随后新合成的链被切除,但是O6⁃MG链保持完好无损.当产生另一条链时,重复该修复周期.胸腺嘧啶插入和切除的无效循环导致细胞周期停滞和凋亡[11,23].由MMR蛋白复合物突变引起MMR途径受损,从而导致MMR对TMZ诱导的O6⁃MG加合物识别和修复失败.这些突变导致DNA错配继续复制并允许细胞周期进行,使得TMZ治疗效果降低[24].而且,这些突变可能在细胞周期中存在或在TMZ治疗过程中获得[25].鉴于其重要性,我们应制定恢复MMR系统的策略,以期提高TMZ的疗效.

2.1.3 BER 该系统含有多种蛋白质和酶,能够修复多种因素导致的DNA损伤,如氧化剂,电离辐射或烷化剂[26-27].其中,BER系统中对DNA损伤起主要修复作用的一种酶是多聚(ADP⁃核糖)聚合酶⁃1(PARP⁃1).该酶与DNA结合后以NAD+作为底物,开始合成ADP⁃核糖聚合链(PAR),其能够招募BER复合蛋白(XRCC1,DNA聚合酶,连接酶,皮瓣核酸内切酶1)进行DNA修复[28].

BER途径可以修复由TMZ造成的N3和N7位甲基化[11,23,29].如果不修复的话,N3位病变能够引起致命性的损伤[11,30].这些由TMZ引起的超过90%以上的甲基化都可以迅速被BER途径修复.因此,当BER途径的成员发生突变时TMZ引起的细胞毒性会增强.因此,利用PARP抑制剂限制BER的活性有望成为增强TMZ临床治疗效果的策略[31].与O6位上的甲基化相比,N7和N3位上的甲基化水平更高,尽管如此,在TMZ耐药中BER发挥的作用不如MMR或MGMT重要.

2.2 EGFR和半乳凝素⁃1的过表达

2.2.1 EGFR EGFR,相对分子质量为170 kDa,它作为一个受体分子,在肿瘤发展中通过刺激细胞增殖、迁移、血管生成促使细胞对化疗产生抵抗[32].配体与野生型EGFR结合将导致以下信号通路被激活:Ras/Raf/MAPK(有丝分裂原激活激酶)[33]或PI3K/AKT/mTOR[34].这些信号途径在GBM中被强烈激活后会导致细胞的自噬抑制和凋亡减少,从而使TMZ的效力减弱[35].

在原发性的GBM中,EGFR基因扩增是最常见的遗传改变,其发生率为40%[36],而且在这些原发性的GBM中,大约有一半的肿瘤都携带重排EGFR的基因,这导致在这些肿瘤中表达野生型EGFR以及突变的EGFR[37].在脑胶质母细胞瘤中,EGFR突变体Ⅲ(EGFRvⅢ)是EGFR受体中最常见的突变体,其具有一定的结构特征,胞外结构域中缺失了267个氨基酸,这导致受体与具有组成型酪氨酸激酶活性的配体不能结合.

临床上已经开发了一种治疗分子来抑制EGFR信号通路.例如,西妥昔单抗1,一种可以特异性结合EGFR的单克隆抗体.它可以抑制下游信号转导途径[38].西妥昔单抗能够识别野生型EGFR和EGFR⁃vIII受体并与之结合,引起细胞增殖受到抑制.但是,在临床治疗中使用西妥昔单抗治疗GBM的结果令人失望,患者的中位生存期只有五个月[39].目前,以TMZ和西妥昔单抗结合放疗治疗原发性GBM的Ⅰ/Ⅱ期临床试验正在进行[40].此外,吉非替尼1和厄洛替尼1作为酪氨酸激酶抑制剂(TKIs)也被用于抑制EGFR信号通路的激活.它们通过与细胞质中ATP结构域结合阻断EGFR磷酸化,从而抑制EGFR介导的下游途径活化[41].这些分子在针对GBM患者治疗的临床试验(Ⅰ期和Ⅱ期)中已经进行了测试[42-43].虽然使用吉非替尼或厄洛替尼1联合放射治疗可以适度延长患者生存时间,但是结果并不令人满意[44-45].有研究对TKIs和TMZ的关联性进行了评估,结果显示与放射治疗联合运用后接受TMZ治疗的患者中位生存期确实得到了改善,但只有一小部分患者的疾病发展可被控制.实际上,GBM患者的治疗结果与 PTEN的存在相关[39].而且,有文献报道,MGMT启动子甲基化水平高和具备完整PTEN的患者具有更显著的生存优势[43].

2.2.2 半乳糖凝集素⁃1 该蛋白属于凝集素家族的一员,它含有一个对β⁃半乳糖苷高亲和力的碳水化合物识别结构域(carbohydrate recognition domain,CRD)[46-47].半乳糖凝集素⁃1嵌入细胞膜,在细胞内外都有部分结构暴露,其位于细胞内和细胞外的结构功能不同,主要依赖于蛋白质⁃蛋白质相互作用.其细胞外活性取决于其本身的凝集素活性[48].星形细胞瘤的恶性程度与半乳糖凝集素⁃1的表达水平之间呈现出一定的相关性[49].

半乳糖凝集素⁃1是一种缺氧调节蛋白,是由缺氧刺激产生和分泌的[50].半乳糖凝集素已被证明在癌症生物学的多个方面发挥重要作用:通过和整合素以及细胞外基质部分相互作用来影响细胞的迁移[51];通过调节ORP150,一种控制血管内皮生长因子(vascular endothelial growth factor,VEGF)的成熟和分泌的因子[52],来刺激血管以及转移灶的形成[53];通过与Ras蛋白相互作用[54-55]以及调控 p53在核内的迁移[54]影响化疗和放疗的抗性.此外,半乳糖凝集素⁃1通过促进凋亡来发挥抑制T细胞效应子功能,允许肿瘤细胞逃避免疫系统[50,56].鉴于其在化疗和放疗抗性中的重要作用,考虑了通过不同策略靶向半乳糖凝集素⁃1来提高胶质瘤患者的治疗效果.例如,合成乳果糖作为一种β⁃半乳糖苷对半乳糖凝集素⁃1的CRD域具有较高的亲和性[57].半乳甘露聚糖1能够在不同于CRD的位点与半乳糖凝集素⁃1结合,从而发挥抑制作用[58].且半乳甘露聚糖1经FDA批准用于治疗结肠直肠癌,并获得了很好的结果.但是,必须进行更多的调查以评估其对GBM的影响.

2.3 p53和Mdm2在人体内部,p53是由TP53编码的肿瘤抑制蛋白,当细胞处于应急状态,比如DNA受到损伤时,可导致细胞生长暂时或永久停止[59-60].某些频繁的TP53突变导致其肿瘤抑制功能丧失,且p53突变蛋白大量累积.野生型p53由于Mdm2的抑制作用其在正常条件下具有较短的半衰期[60],但在癌细胞中,这个p53突变体的半衰期不经历这种抑制并累积到很高的水平[61].除了TP53基因的突变促进肿瘤细胞生长和放化疗抗性之外[62],Mdm2作为一个在GBM中经常扩增的基因[63],其过表达也会导致p53的功能丧失[64].

由于p53缺失在胶质瘤发生发展以及抗癌药物的抗性中发挥关键作用,目前正在研究多种策略以恢复p53的作用.其中用以恢复p53功能和抑制p53⁃Mdm2相互作用的基因治疗是最重要的[65].因为基因治疗可以直接将野生型p53传递到癌细胞中.有文献报道,用p53的腺病毒感染细胞可以改善复发性恶性胶质瘤患者的预后[66].由于Mdm2在胶质瘤中过度表达,靶向Mdm2与p53的相互作用也是一种潜在的癌症治疗策略[67].用p53⁃Mdm2结合抑制剂处理细胞也会导致野生型p53蛋白稳定和积累[68],之中有代表性的分子之一Nutlin⁃3已经进入人们的视野,并且在临床前研究中得到了关注.Nutlin⁃3能够在p53的结合域竞争性的结合Mdm2有关,这一结果导致p53游离出来从而被激活[65,68].p53⁃Mdm2结合抑制剂的主要限制作用仅在表达野生型p53的癌细胞中有效,在表达突变型p53的细胞中没有此种作用.此外,重要的是应该考虑该抑制剂可能导致的毒性作用,以及在表达p53野生型的细胞中引起p53的过表达[69].

2.4 PTENPTEN是一种肿瘤生长抑制酶,由于它在GBM中经常突变导致肿瘤细胞增殖能力加强[70-71].PTEN通过抑制PI3K和Mdm2的转录保护野生型p53免于灭活和降解[72].而且,p53能够通过与PTEN启动子结合来增强PTEN基因转录而增加PTEN活性[73].此外,PTEN具有增强TP53基因转录活性的功能,它可以通过与p53结合来提高p53的稳定性[74].在PTEN缺失或突变的肿瘤中,恢复野生型PTEN的表达可以抑制肿瘤细胞的致瘤性,促进凋亡,并增加癌细胞的化疗敏感性[72,75].这表明野生型PTEN和野生型p53的关联可以增强肿瘤细胞对抗癌药物的敏感性,特别是对TMZ.

2.5 miRNAs在癌症的发展进程中,miRNA作为一类新型致癌基因或抑癌基因,发挥着重要的作用[76].一些研究表明,异常的miRNA表达可能影响TMZ对GBM的敏感性[77],例如,在TMZ耐药细胞株中miR⁃21,miR⁃195,miR⁃455⁃3p和 miR⁃10a∗被上调[78-79].相反的,有些miRNA在肿瘤细胞中被下调,如实验验证miR⁃145在GBM肿瘤细胞中下调,这增强了TMZ的抗性[80].鉴于miRNA在癌症发展中的双面性,我们可以利用miRNA来开发新的治疗策略,使用反义寡核苷酸或miRNA敲除手段使促癌miR⁃NA可以下调[81-82],而用 miRNA模拟物代替抑癌miRNA使其表达上调[83],以其达到改善癌症患者生存的目的.

3 结语

脑胶质瘤对TMZ的耐药性不是受单一因素的影响.通过针对相关分子的进一步研究,可以推进临床个体化治疗的方案实行.相较于传统疗法而言,个体化的化疗方案可以降低胶质瘤对药物的耐药性,增加疗效,改善患者的预后,同时,探讨胶质瘤对TMZ耐药性机制进展有助于找到某些导致肿瘤复发的新靶点,为胶质瘤的治疗提供有效的新方案.

[1]Dolecek TA,Propp JM,Stroup NE,et al.CBTRUS statistical report:primary brain and central nervous system tumors diagnosed in the United States in 2005-2009[J].Neuro Oncol,2012,14 Suppl 5:v1-49.

[2]郑立影,吕 红,林赋桂,等.脑胶质瘤治疗策略及其研究进展[J].吉林医药学院学报,2016,37(1):50-53.

[3]Ohgaki H,Dessen P,Jourde B,et al.Genetic pathways to glioblasto⁃ma a population⁃based study[J].Cancer Res,2004,64(19):6892.

[4]王永峰.我和替莫唑胺二十年[J].现代药物与临床,2013, 28(4):648-660.

[5]Fukai J,Koizumi F,Nakao N.Enhanced anti⁃tumor effect of zole⁃dronic acid combined with temozolomide against human malignant glioma cell expressing O6⁃methylguanine DNA methyltransferase[J].Plos One,2014,9(8):e104538.

[6]Cavaliere R,Wen PY,Schiff D.Novel therapies for malignant gliomas[J].Neurol Clin,2007,25(4):1141-1171.

[7]Weller M,Stupp R,Reifenberger G,et al.MGMT promoter methyl⁃ation in malignant gliomas:ready for personalized medicine[J].Nat Rev Neurol,2010,6(1):39-51.

[8]Pletsas D,Garelnabi EAE,Li L,et al.Synthesis and Quantitative Structure⁃Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6⁃Methylguanine⁃DNA⁃methyltransferase,DNA Mismatch Repair,and p53[J].J Med Chem,2013,56(17):7120-7132.

[9]Friedman HS,Kerby T,Calvert H.Temozolomide and treatment of malignant glioma[J].Clin Cancer Res,2000,6(7):2585-2597.

[10]Drabløs F,Feyzi E,Aas PA,et al.Alkylation damage in DNA and RNA⁃⁃repair mechanisms and medical significance[J].DNA Repair,2004,3(11):1389-1407.

[11]Zhang J,Stevens MF,Bradshaw TD.Temozolomide:mechanisms of action,repair and resistance[J].Curr Mol Pharmacol,2012,5(1):102-114.

[12]Kaina B,Christmann M,Naumann S,et al.MGMT:key node in the battle against genotoxicity,carcinogenicity and apoptosis induced by alkylating agents[J].DNA Repair(Amst),2007,6(8):1079-1099.

[13]Park CK,Kim JE,Ji YK,et al.The changes in MGMT promoter methylation status in Initial and recurrent glioblastomas⁃translational Oncology[J].Transl Oncol,2012,5(5):393-397.

[14]Tubbs JL,Pegg AE,Tainer JA.DNA binding,nucleotide flipping,and the helix⁃turn⁃helix motif in base repair by O6⁃alkylguanine⁃DNA alkyltransferase and its implications for cancer chemotherapy[J].DNA Repair(Amst),2007,6(8):1100-1115.

[15]Xuwelliver M,Pegg AE.Degradation of the alkylated form of the DNA repair protein,O(6)⁃alkylguanine⁃DNA alkyltransferase[J].Carcinogenesis,2002,23(5):823.

[16]Howell SR.Inactivation of the DNA⁃repair gene MGMT and the clini⁃cal response of gliomas to alkylating agents[J].N Engl J Med,2000,343(19):1350-1354.

[17]Bhakat KK,Mitra S.CpG methylation⁃dependent repression of the human O6⁃methylguanine⁃DNA methyltransferase gene linked to chromatin structure alteration.[J].Carcinogenesis,2003,24(8):1337-1345.

[18]Silber JR,Bobola MS,Blank A,et al.O(6)⁃methylguanine⁃DNA methyltransferase in glioma therapy:promise and problems.[J].Biochim Biophys Acta,2012,1826(1):71-82.

[19]Hegi ME,Diserens AC,Gorlia T,et al.MGMT gene silencing and benefit from temozolomide in glioblastoma[J].N Engl J Med,2005,352(10):997-1003.

[20]Kaina B,Margison GP,Christmann M.Targeting O6⁃methylguanine⁃DNA methyltransferase with specific inhibitors as a strategy in cancer therapy[J].Cell Mol Life Sci,2010,67(21):3663-3681.

[21]Verbeek B,Southgate TD,Gilham DE,et al.O6⁃Methylguanine⁃DNA methyltransferase inactivation and chemotherapy[J].Br Med Bull,2008,85:17-33.

[22]Hansen WK,Kelley MR.Review of Mammalian DNA Repair and Translational Implications[J].J Pharmacol Exp Ther,2000,295(1):1-9.

[23]Fu D,Calvo JA,Samson LD.Balancing repair and tolerance of DNA damage caused by alkylating agents.[J].Nat Rev Cancer,2012,12(2):104-120.

[24]Liu L,Markowitz S,Gerson SL.Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3⁃bis(2⁃chloroethyl)nitrosourea[J].Cancer Res,1996,56(23):5375-5379.

[25]Yip S,Miao J,Cahill DP,et al.MSH6 mutations arise in glioblasto⁃mas during temozolomide therapy and mediate temozolomide resist⁃ance[J].Clin Cancer Res,2009,15(14):4622-4629.

[26]Almeida KH,Sobol RW.A unified view of base excision repair:lesion⁃dependent protein complexes regulated by post⁃translational modification[J].DNA Repair(Amst),2007,6(6):695-711.

[27]Wood RD,Mitchell M,Sgouros J,et al.Human DNA repair genes[J].Science,2001,291(5507):1284-1289.

[28]Malanga M,Althaus FR.The role of poly(ADP⁃ribose)in the DNA damage signaling network[J].Biochem Cell Biol,2005,83(3):354-364.

[29]Denny BJ,Wheelhouse RT,Stevens MF,et al.NMR and molecular modeling investigation of the mechanism of activation of the antitu⁃mor drug temozolomide and its interaction with DNA[J].Biochem⁃istry,1994,33(31):9045-9051.

[30] Horton JK,Wilson SH.Hypersensitivity phenotypes associated with genetic and synthetic inhibitor⁃induced base excision repair deficiency[J].DNA Repair(Amst),2007,6(4):530-543.

[31]Muñoz⁃Gámez JA,López Viota J,Barrientos A,et al.Synergistic cytotoxicity of the poly(ADP⁃ribose)polymerase inhibitor ABT⁃888 and temozolomide in dual⁃drug targeted magnetic nanoparticles[J].Liver Int,2015,35(4):1430-1441.

[32]Huang PH,Xu AM,White FM.Oncogenic EGFR signaling networks in glioma[J].Sci Signal,2009,2(87):re6.

[33]Guha A,Feldkamp MM,Lau N,et al.Proliferation of human malig⁃nant astrocytomas is dependent on Ras activation[J].Oncogene,1997,15(23):2755-2765.

[34]Narita Y,Nagane M,Mishima K,et al.Mutant epidermal growth factor receptor signaling down⁃regulates p27 through activation of the phosphatidylinositol 3⁃kinase/Akt pathway in glioblastomas[J].Cancer Res,2002,62(22):6764-6769.

[35]Furuta S,Hidaka E,Ogata A,et al.Ras is involved in the negative control of autophagy through the class I PI3⁃kinase[J].Oncogene,2004,23(22):3898-3904.

[36]Ekstrand AJ,James CD,Cavenee WK,et al.Genes for epidermal growth factor receptor,transforming growth factor alpha,and epidermal growth factor and their expression in human gliomas in vivo[J].Cancer Res,1991,51(8):2164-2172.

[37]Lo HW.EGFR⁃targeted therapy in malignant glioma:novel aspects and mechanisms of drug resistance[J].Curr Mol Pharmacol,2010, 3(1):37-52.

[38]Weiner LM,Surana R,Wang S.Monoclonal antibodies:versatile platforms for cancer immunotherapy[J].Nat Rev ImmunoL,2010,10(5):317-327.

[39]Neyns B,Sadones J,Joosens E,et al.Stratified phase II trial of cetuximab in patients with recurrent high⁃grade glioma.[J].Ann Oncol,2009,20(9):1596.

[40]Combs SE,Heeger S,Haselmann R,et al.Treatment of primary glioblastoma multiforme with cetuximab,radiotherapy and temozolo⁃mide(GERT)⁃phase I/II trial:study protocol[J].BMC Cancer,2006,6:133.

[41]Brandes AA,Franceschi E,Tosoni A,et al.Epidermal growth factor receptor inhibitors in neuro⁃oncology:hopes and disappointment[J].Clin Cancer Res,2008,14(4):957-960.

[42]Brown PD,Krishnan S,Sarkaria JN.et al.Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme:North Central Cancer Treatment Group Study N0177[J].J Clin Oncol,2008,26(34):5603-5609.

[43]Prados MD,Chang SM,Butowski N,et al.Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma[J].J Clin Oncol,2009,27(4):579-584.

[44]Chakravarti A,Wang M,Robins HI,et al.RTOG 0211:A Phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients[J].Int J Radiat Oncol Biol Phys,2013,85(5):1206-1211.

[45]Uhm JH,Ballman KV,Wu W,et al.Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma:Mayo/North central cancer treatment group study N0074[J].Int J Radiat Oncol Phys,2011,80(2):347-353.

[46]Lefranc F,Rynkowski M,Dewitte O,et al.Present and potential future adjuvant issues in high⁃grade astrocytic glioma treatment[J].Adv Tech Stand Neurosurg,2009,34:3-35.

[47]Saussez S,Camby I,Toubeau G,et al.Galectins as modulators of tumor progression in head and neck squamous cell carcinomas[J].Head Neck,2007,29(9):874-884.

[48]Camby I,Le Mercier M,Lefranc F,et al.Galectin⁃1:a small protein with major functions[J].Glycobiology,2006,16(11):137R-157R.

[49]Verschuere T,Vleeschouwer SD,Lefranc F,et al.Galectin⁃1 and immunotherapy for brain cancer[J].Expert Rev Neurother,2014,11(4):533-543.

[50]Le QT,Shi G,Cao H,et al.Galectin⁃1:a link between tumor hypoxia and tumor immune privilege[J].J Clin Oncol,2005,23(35):8932-8941.

[51]Camby I,Decaestecker C,Lefranc F,et al.Galectin⁃1 knocking down in human U87 glioblastoma cells alters their gene expression pattern[J].Biochem Biophys Res Commun,2005,335(1):27-35.

[52]Rabinovich GA,Baum LG,Tinari N,et al.Galectins and their ligands:amplifiers,silencers or tuners of the inflammatory response[J].Trends Immunol,2002,23(6):313-320.

[53]Strik HM,Hoffmann A.Galectins in malignant gliomas:expression,functions,and possible therapeutic options[M].Galectins,2012:223-234.

[54]Le Mercier M,Lefranc F,Mijatovic T,et al.Galectin⁃1 involvement in glioma chemoresistance[J].Toxicol Appl Pharmacol,2008,229(2):172-183.

[55]Paz A,Haklai R,Elad⁃Sfadia G,et al.Galectin⁃1 binds oncogenic H⁃Ras to mediate Ras membrane anchorage and cell transformation[J].Oncogene,2001,20(51):7486-7493.

[56]Rubinstein N,Alvarez M,Zwirner NW,et al.Targeted inhibition of galectin⁃1 gene expression in tumor cells results in heightened T cell⁃mediated rejection:A potential mechanism of tumor⁃immune privilege[J].Cancer Cell,2004,5(3):241-251.

[57]Rabinovich GA,Cumashi A,Bianco GA,et al.Synthetic lactulose amines:novel class of anticancer agents that induce tumor⁃cell apoptosis and inhibit galectin⁃mediated homotypic cell aggregation and endothelial cell morphogenesis[J].Glycobiology,2006,16(3):210-220.

[58]Miller MC,Klyosov A,Mayo KH.The α⁃galactomannan Davanat binds galectin⁃1 at a site different from the conventional galectin carbohydrate binding domain[J].Glycobiology,2009,19(9):1034-1045.

[59]Lotem J,Peled⁃kamar M,Groner Y,et al.Cellular oxidative stress and the control of apoptosis by wild⁃type p53,cytotoxic compounds,and cytokines[J].Proc Natl Acad Sci U S A,1996,93(17):9166-9171.

[60]Shangary S,Wang S.Small⁃molecule inhibitors of the MDM2⁃p53 protein⁃protein interaction to reactivate p53 function: a novel approach for cancer therapy[J].Annu Rev Pharmacol Toxicol,2009,49:223-241.

[61]Olivier M,Petitjean A,Fromentel CDC,et al.TP53,Mutations in Human Cancers:Selection versus Mutagenesis[M].Springer US,2010:1-18.

[62]Burton EC,Lamborn KR,Forsyth P,et al.Aberrant p53,mdm2,and proliferation differ in glioblastomas from long⁃term compared with typical survivors[J].Clin Cancer Res,2002,8(1):180-187.

[63]Freedman DA,Wu L,Levine AJ.Functions of the MDM2 oncopro⁃tein[J].Cell Mol Life Sci,1999,55(1):96-107.

[64]Shchors K,Persson AI,Rostker F,et al.Using a preclinical mouse model of high⁃grade astrocytoma to optimize p53 restoration therapy[J].Proc Natl Acad Sci U S A,2013,110(16):E1480-e1489.

[65]Hong B,van den Heuvel AP,Prabhu VV,et al.Targeting tumor suppressor p53 for cancer therapy:strategies,challenges and oppor⁃tunities[J].Curr Drug Targets,2014,15(1):80-89.

[66]Zhu JX,Li ZM,Geng FY,et al.[Treatment of recurrent malignant gliomas by surgery combined with recombinant adenovirus⁃p53 in⁃jection][J].Zhonghua Zhong Liu Za Zhi,2010,32(9):709-712.

[67]Wang AL,Liu ZX,Li G,et al.Expression and significance of P53 protein and MDM⁃2 protein in human gliomas[J].Clin Med(Engl),2011,124(16):2530-2533.

[68]Vassilev LT,Vu BT,Graves B,et al.In vivo activation of the p53 pathway by small⁃molecule antagonists of MDM2[J].Science,2004,303(5659):844-848.

[69]Ringshausen I,O'Shea CC,Finch AJ,et al.Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo[J].Cancer Cell,2006,10(6):501-514.

[70]Elhag R,Mazzio EA,Soliman KF.The effect of silibinin in enhan⁃cing toxicity of temozolomide and etoposide in p53 and PTEN⁃mutated resistant glioma cell lines[J].Anticancer Res,2015,35(3):1263-1269.

[71]Knobbe CB,Merlo A,Reifenberger G.Pten signaling in gliomas[J].Neuro Oncol,2002,4(3):196-211.

[72]Mayo LD,Dixon JE,Durden DL,et al.PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy[J].Biol Chem,2002,277(7):5484-5489.

[73]Stambolic V,Macpherson D,Sas D,et al.Regulation of PTEN transcription by p53[J].Mol Cell,2001,8(2):317-325.

[74]Freeman DJ,Li AG,Li HH,et al.PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase⁃dependent and independent mechanisms[J].Cancer Cell,2003,3(2):117-130.

[75]Li SZ,Qiao SF,Zhang JH,et al.Quercetin increase the chemosensitivity of breast cancer cells to doxorubicin via PTEN/Akt pathway[J].Anticancer Agents Med Chem,2015,15(9):1185-1189.

[76]Babashah S,Soleimani M.The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis[J].Eur J Cancer,2011,47(8):1127-1137.

[77]Mizoguchi M,Guan Y,Yoshimoto K,et al.Clinical implications of microRNAs in human glioblastoma[J].Front Oncol,2013,3:19.

[78]Shi L,Chen J,Yang J,et al.MiR⁃21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl⁃2 ratio and caspase⁃3 activity[J].Brain Res,2010,1352:255-264.

[79]Ujifuku K,Mitsutake N,Takakura S,et al.miR⁃195,miR⁃455⁃3p and miR⁃10a(∗)are implicated in acquired temozolomide resistance in glioblastoma multiforme cells[J].Cancer Lett,2010,296(2):241-248.

[80]Yang YP,Chien Y,Chiou GY,et al.Inhibition of cancer stem cell⁃like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane⁃short branch PEI[J].Biomaterials,2012,33(5):1462-1476.

[81]Ebert MS,Neilson JR,Sharp PA.MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells[J].Nat Methods,2007,4(9):721-726.

[82]Esau CC.Inhibition of microRNA with antisense oligonucleotides[J].Methods,2008,44(1):55-60.

[83]Chistiakov DA,Chekhonin VP.Contribution of microRNAs to radio⁃and chemoresistance of brain tumors and their therapeutic potential[J].Eur J Pharmacol,2012,684(1-3):8-18.

Research advances on the mechanism of glioma resistance to temozolomide

XU Xiao⁃Shan,TU Yan⁃Yang
Department of Experimental Surgery,Tangdu Hospital,Fourth Military Medical University,Xi'an 710038,China

At present,the standard treatment strategy for glioma is surgical resection combined with radiotherapy and chemothera⁃py.Temozolomide(TMZ)is a novel oral alkylating agent that is widely used in the combined treatment of gliomas.Because it could pass through the blood⁃brain barrier to reach the patient's tumor lesions and play a lasting therapeutic effect.However,the survival time of glioma patients is short and the prognosis is poor due to the drug resistance of temozolomide.The mechanism of this drug resistance is very complex,including the activation of DNA repair enzymes,the overexpression of EGFR(epidermal growth factor receptor) and galactinin⁃1,the abnormal regulation of p53,Mdm2(mouse bimodal 2),PTEN(phosphatase and tonic protein homologs)and miRNAs.Therefore,we need a better un⁃derstanding of the mechanism of glioma resistance to temozolo⁃mide,which will help us to find a solution to reduce the resistance of temozolomide and improve the efficacy of chemotherapy drugs.

temozolomide;drug resistance;glioma

R739.41

A

2095⁃6894(2017)07⁃55⁃06

2017-05-24;接受日期:2017-06-06

国家自然科学基金(81572983);陕西省社会发展科技攻关项目 (2015SF027);唐 都 医 院 创 新 发 展 基 金 资 助 项 目(2016JCYJ013)

徐小珊.硕士.E⁃mail:275720539@qq.com

涂艳阳.博士,副教授,副主任医师.E⁃mail:tu.fmmu@gmail.com

猜你喜欢
莫唑胺凝集素半乳糖
澳新拟批准来自转基因米曲霉的多聚半乳糖醛酸酶和果胶酯酶作为加工助剂
大型真菌凝集素的结构、糖特异性以及其在免疫调节中的研究进展*
鱼类凝集素概述
凝集素的结构特征及其生物技术应用进展
白花丹素调节MEK/ERK通路增加脑胶质瘤U87细胞对替莫唑胺的敏感性研究
生物催化法制备低聚半乳糖的研究进展
如何应对半乳糖血症
芍药苷抑制Src/STAT3信号通路协同替莫唑胺抑制胶质瘤细胞增殖和迁移
miR-145-5p靶向抑制RAD18表达调控替莫唑胺对脑胶质瘤细胞凋亡的影响
半乳糖凝集素—3在心力衰竭评估中的作用与价值