小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系

2021-08-31 06:46黄义文代旭冉刘宏伟买春艳于立强于广军张宏军李洪杰
作物学报 2021年11期
关键词:济麦基因型抗性

黄义文 代旭冉 刘宏伟 杨 丽 买春艳 于立强 于广军 张宏军,* 李洪杰,* 周 阳,*

小麦多酚氧化酶基因和位点等位变异与穗发芽抗性的关系

黄义文1代旭冉1刘宏伟1杨 丽1买春艳2于立强3于广军3张宏军1,*李洪杰1,*周 阳1,*

1中国农业科学院作物科学研究所 / 作物分子育种国家工程实验室, 北京 100081;2新乡县矮败小麦育种技术创新中心, 河南新乡 453731;3石家庄市农林科学研究院赵县实验基地, 河北赵县 051530

和是控制小麦多酚氧化酶(polyphenol oxidase, PPO)活性的关键基因。有报道PPO活性与穗发芽抗性有关, 但和位点不同等位变异对穗发芽抗性的影响尚不明确。本研究利用248份我国主栽小麦品种3年发芽指数, 结合和位点等位变异分型结果, 研究两个位点不同等位变异及其等位变异组合与穗发芽抗性的关系。结果表明, 发芽指数主要受年份、位点和×互作共同影响。在位点, 携带低PPO活性等位变异的小麦品种发芽指数显著低于携带高PPO活性等位变异的品种, 平均发芽指数相差5.22%; 相反, 在位点携带低PPO活性等位变异品种的发芽指数高于携带高PPO活性等位变异的品种, 但差异不显著。在4种等位变异组合中,组合类型品种的发芽指数最低。上述位点等位变异与穗发芽抗性的关系在轮选13 × 济麦20 F2及F2:3分离群体中得到验证。PPO活性和相对表达量均与发芽指数呈显著正相关。本研究表明,等位变异的分子标记可以有效地用于穗发芽抗性辅助选择。

小麦; 抗穗发芽育种; 多酚氧化酶;等位变异; 分子标记辅助选择

中国是世界上最大的小麦生产国, 约占全球总产量的17%[1]。穗发芽是限制小麦产量和品质的重要自然灾害之一, 在小麦主产国频繁发生[2]。穗发芽可导致小麦价格降低20%~50%, 全球每年因穗发芽损失高达10亿美元[3]。我国83%的小麦种植地区受到不同程度的穗发芽影响[4]。近年来, 收获期间的极端天气导致穗发芽频发, 例如2013、2015和2016年小麦主产区黄淮冬麦区和长江中下游冬麦区穗发芽大面积发生, 对小麦生产造成严重影响[5]。因此, 提高品种的穗发芽抗性成为我国小麦主产区的重要育种目标。

小麦穗发芽抗性是由多基因控制的复杂数量性状[6-7], 受环境因素影响大, 分子标记辅助选择能够提高小麦抗穗发芽育种的选择效率。目前, 已经定位了42个与穗发芽抗性相关的QTL[3,8]。其中, 位于第二、三部分同源群染色体和4A染色体上的6个穗发芽抗性基因[9]、[10]、[11]、[12]、[13]和[14]已经被克隆并开发出相应的功能标记。Lin等[15]利用含有和抗性等位变异的小麦品种Tutoumai分别与AUS1408和NW97S186杂交并回交构建BC2F2:3群体, 发现基因在不同的环境下能够降低发芽率8.3%~29.0%;基因可降低发芽率6.7%~27.6%; 2个基因的聚合体可使发芽率降低9.0%~49.2%。

多酚物质的减少或缺失导致无原花色素大麦突变体休眠期缩短、吸水性增强, 从而加重穗发芽发生[16]。在小黑麦休眠种子中酚类物质含量较高, 而在发芽的种子中明显较低, 表明酚类物质能够抑制穗发芽的发生[17]。此外, 在甜樱桃[18]、苜蓿[19]和藏红花[20]等植物上也证实穗发芽抗性与酚类物质含量呈显著正相关。小麦PPO可以催化酚类的羟基转化为醌或者催化多酚类变为氧化醌[21]。醌类物质因其较强的电化学性质而发生的自动氧化反应, 是导致小麦面粉食品加工储藏过程中发生褐变的主要原因[22]。有研究发现PPO活性与小麦穗发芽抗性有关, 并提出PPO活性可作为穗发芽抗性筛选的指标[23-24],但这需要更多品种和遗传群体验证, 加之PPO活性的测定耗时耗力, 因而这个指标难于用于育种后代规模化选择。

控制小麦PPO活性基因主要包括位于2AL和2DL染色体上的和[25-26]。基因内含子191 bp的插入缺失(InDel)与PPO活性密切相关, STS标记PPO18可用来检测高、低PPO活性等位变异和[25]。针对基因开发的一对显性互补STS标记PPO29和PPO16, 可分别检测高、低PPO活性等位变异和[26]。这3个功能标记可用于和位点不同PPO活性等位变异的检测。本研究的目的是阐明这2个位点不同等位变异与穗发芽抗性关系, 为开展育种后代穗发芽抗性的分子标记辅助选择提供理论和技术支持。

1 材料与方法

1.1 供试材料

供试材料为248份1971—2020年小麦主栽品种, 其中包括北部麦区品种13份、黄淮冬麦区品种204份、长江中下游冬麦区品种17份和西南冬麦区品种14份。利用穗发芽敏感品种轮选13 (基因型)做为母本, 抗穗发芽品种济麦20(基因型)做为父本, 构建轮选13 × 济麦20 F2和F2:3群体, 共计266个家系, 用于验证位点不同等位变异与穗发芽抗性关系。

1.2 田间试验

2017—2018年、2018—2019年和2019—2020年小麦生长季, 在中国农业科学院作物科学研究所新乡试验站(35°31′N, 113°85′E)开展田间试验。小麦主栽品种和轮选13 × 济麦20群体F2:3家系每个材料种植1行, 行长2 m, 行距20 cm, 株距5 cm; 轮选13 × 济麦20群体F2单株种植采用2 m行长, 行距20 cm, 株距10 cm。播种前, 施用复合肥折合纯N 200 kg hm–2, P2O5191 kg hm–2和K2O 41 kg hm–2[27]。其他田间管理按照当地大田生产管理进行。

1.3 穗发芽抗性表型评价

2018、2019和2020年连续3年对主栽小麦品种穗发芽抗性进行表型鉴定。采用籽粒发芽指数法鉴定穗发芽抗性, 发芽指数越高, 穗发芽抗性越差[28]。在生理成熟期(开花后约35 d, 穗茎变黄), 每个材料收获30个穗子。室温(25℃)自然风干4 d, 手工脱粒后放入–20℃冰柜中保存, 统一进行表型评价。发芽指数鉴定设3次重复, 每次重复50粒种子。种子用5%的NaClO消毒15 min, 蒸馏水冲洗3次。在无菌培养皿中垫上两张灭菌滤纸并加入适量的蒸馏水, 将消毒后的种子摆放在培养皿中, 种子腹沟朝下。在25℃的条件下培养7 d。每天统计发芽数, 并挑出发芽的种子。发芽指数(germination index, GI)计算公式如下: GI (%) = [(7×1+6×2+5×3+4×4+ 3×5+ 2×6+7)/7×]×100%, 其中1、2、3……7分别代表第1、2、3……7 d的发芽数,为总粒数[9]。2019年和2020年, 采用相同方法对轮选13 × 济麦20群体F2和F2:3代进行穗发芽抗性鉴定, 3次实验重复。在生理成熟期, F2代分单株收获、脱粒、风干后进行表型鉴定; F2:3代每个家系随机取20个穗子混脱, 风干后进行穗发芽抗性评价。

1.4 PPO活性基因不同等位变异分子检测

主栽品种每个材料取10粒种子放在培养皿中, 取室温生长5日龄叶片, 利用DNA快速提取试剂盒(北京天根生化科技有限公司, 北京)提取小麦基因组DNA。在分蘖期, 轮选13 × 济麦20群体F2代分单株挂牌取叶片进行DNA提取。F2:3代家系分系取穗进行穗发芽抗性鉴定, 其基因型直接用对应的F2单株基因型代替。利用PPO18、PPO16和PPO29引物检测和位点不同等位变异, 扩增片段大小和退火温度见表1。PCR扩增在赛默飞世尔SimpliAmpPCR仪(ThermoFisher Scientific, USA)上进行, 反应体系为10 μL, 包括1 μL DNA模板(50~100 ng μL–1), 5 μL 2×PCR Master Mix, 正反引物各1 μL (10 μmol L–1)和2 μL ddH2O。PCR扩增程序为94℃预变性5 min, 94℃变性30 s, 60℃退火30 s, 72℃延伸1 min, 35个循环, 72℃后延伸10 min。利用1.5%的琼脂糖凝胶电泳分离扩增产物, GeneFinder (Bio-V, 中国福建)染色后用Bio-Rad Gel Doc XR+凝胶成像系统扫描, 分析基因型。

表1 Ppo-A1和Ppo-D1位点不同等位变异检测的功能标记信息

1.5 籽粒PPO活性测定

根据和位点等位变异四种组合类型, 每种组合选择10个品种进行PPO活性测定, 共计40个品种。同时, 根据位点等位变异差异, 在轮选13 × 济麦20 F2:3群体中各选取20个株系进行PPO活性测定。两次实验重复。小麦籽粒PPO活性测定参照Anderson和Morris[29]的方法。每个材料挑选15粒饱满、无病、大小均匀一致的成熟种子用蒸馏水清洗2次, 拭去表面水分, 称重后置于50 mL离心管中, 然后加入配好的L-DOPA/ MOPS反应缓冲液(50 mmol L–1的MOPS缓冲液, pH 6.5; 10 mmol L–1L-DOPA溶液, 吐温20) 4.5 mL; 在振荡器上振荡30 min, 结束后立即放至冰上结束反应。以L-DOPA/MOPS反应缓冲液作为空白对照, 利用SPECORD 200紫外可见分光光度计(Analytik Jena AG, Jena, Germany)测定475 nm的吸光值A。PPO活性公式如下: PPO酶活值(A475nmmin–1g–1× 103)= A/(30 min × 15粒种子克数) × 103。

1.6 RNA提取及qRT-PCR分析

用于PPO活性测定的材料同时用于和基因的qRT-PCR分析。籽粒总RNA提取及纯化采用种子果实RNA提取试剂盒(北京金百特生物技术有限公司, 北京)。利用HiFi-MMLV cDNA第一链合成试剂盒(北京康为世纪生物科技有限公司, 北京)进行RNA反转录, 反应体系为20 μL, 包括 4 μL dNTPs Mix, 2 μL Primer Mix, 2 μL RNA模板(200~300 ng μL‒1), 4 μL 5 × RT buffer, 2 μL (0.1 mol L‒1) DTT, 1 μL (200 U μL‒1) HiFi-MMLV和7 μL RNAase-free H2O。反转录反应程序为42℃孵育30~50 min, 85℃孵育5 min, 反应结束后, 置于冰上冷却。qRT-qPCR扩增在CFX Touch实时荧光定量PCR仪(Bio-Rad, Hercules, USA)上进行, 反应体系为20 μL, 包括10 μL 2 × Universal SYBR Green Fast qPCR Mix (武汉爱博泰克生物科技有限公司, 湖北武汉), 4 μL cDNA模板(25 ng μL‒1), 正反向引物各0.4 μL (10 μmol L‒1), 5.2 μL Nuclease-free H2O。引物序列见表2。反应程序为95℃预变性3 min, 95℃变性5 s, 60℃延伸30 s, 40个循环。基因作为内参基因, 采用2−ΔΔCT方法[30]计算和基因相对表达量。设置3次重复。

表2 qRT-PCR分析引物

1.7 统计分析

利用Microsoft Excel 2019数据分析工具对发芽指数表型数据进行分析。利用SAS v9.2软件(SAS Institute, Cary, NC, USA)进行方差分析和相关分析。通过SPSS16.0软件(International Business Machines Corporation, Armonk, New York, USA)对和位点不同等位变异间发芽指数进行差异显著性检验和不同等位变异组合发芽指数、PPO活性以及基因相对表达量多重比较分析(LSD法)。采用下列公式计算广义遗传力(2):2=2g/(2g+2gy/+2ε/), 其中,2g、2gy、2ε、和分别表示基因型、基因型× 年份间互作、重复和年份[31]。

2 结果与分析

2.1 穗发芽抗性表型分析

248份小麦品种3年发芽指数方差分析发现, 基因型、年份及基因型与年份间互作均方显著(< 0.01), 表明发芽指数受三者共同影响(表3)。发芽指数广义遗传率为0.95。年份间供试品种发芽指数呈极显著正相关, 相关系数为0.69~0.80 (< 0.01) (图1)。由表4可见, 小麦品种间发芽指数差异显著。供试品种3年平均发芽指数为46.70%, 变幅为11.55%~88.70%, 变异系数为36.41%。不同年份间发芽指数存在差异。2019年平均发芽指数最高为58.39%, 变幅为17.14%~92.19%, 变异系数为30.10%; 2020年平均发芽指数最低为34.21%, 变幅为2.95%~88.71%, 变异系数为55.59%。不同种皮颜色品种间发芽指数同样存在显著差异, 红粒品种发芽指数(36.15%)明显低于白粒品种(48.19%)。发芽指数较低的白粒品种有洛旱11 (13.84%)、丰产3号(16.38%)和百农3217 (16.96%), 红粒品种有扬麦20 (11.56%)、扬麦15 (14.53%)和扬麦16 (15.68%)。

亲本轮选13平均发芽指数(81.68%)显著高于济麦20 (28.68%) (< 0.05) (图2)。2019年轮选13 × 济麦20群体F2平均发芽指数为59.49%, 变幅为18.10%~90.76%, 变异系数为27.88%; 2020年F2:3平均发芽指数为46.94%, 变幅为19.14%~79.53%, 变异系数为28.18%。

表3 2018–2020年248份小麦品种发芽指数方差分析

**表示在< 0.01水平下差异显著。**Significance at< 0.01.

图1 小麦品种年份间发芽指数相关分析

**表示在< 0.01水平下差异显著。**Significance at< 0.01.

表4 248份小麦品种和轮选13 ×济麦20群体平均发芽指数、标准差、变幅和变异系数

图2 亲本轮选13 (A)和济麦20 (B)穗发芽抗性比较(发芽3 d)

2.2 Ppo-A1和Ppo-D1位点不同等位变异检测

利用PPO18、PPO16和PPO29标记检测248份小麦品种和位点的不同等位变异。在位点, PPO18标记在洛旱7号、新麦20和淮麦20等113份小麦品种中扩增出685 bp片段, 表明这些品种携带高PPO活性等位变异; 京411、山农20和石4185等135份小麦品种中扩增出876 bp片段, 表明这些品种携带低PPO活性等位变异(图3-A)。在位点, PPO16标记在石麦12、山农20和新麦20等129份小麦品种中扩增出713 bp片段, 表明这些品种携带低PPO活性等位变异; PPO29标记在京411、洛旱7号和石4185等119份小麦品种中扩增出490 bp片段, 表明这些品种携带高PPO活性等位变异(图3-B)。所有供试品种在2个位点没有发现杂合基因型。

2.3 Ppo-A1和Ppo-D1位点不同等位变异与穗发芽抗性关系

248份小麦品种和位点3年发芽指数方差分析发现, 发芽指数受年份、位点以及×互作共同影响(表5)。在位点, 携带等位变异品种(135份)发芽指数显著低于携带等位变异品种(113份) (< 0.01)。2018年、2019年和2020年,品种比品种发芽指数分别降低3.90%、6.33%和5.43%, 3年平均降低5.22% (图4-A)。相反, 在位点携带低多酚氧化酶等位变异品种(129份)一致表现比携带高多酚氧化酶等位变异品种(119份)更高的发芽指数, 但两种等位变异品种间发芽指数差异不显著。在2018年、2019年、2020年以及3年平均分别高1.6%、1.4%、1.5%和1.5% (图4-B)。

图3 分子标记PPO18、PPO16和PPO29检测部分小麦品种Ppo-A1 (A)和Ppo-D1 (B)位点的不同等位变异

M: DNA ladder 2000; 1: 京411; 2: 洛旱7号; 3: 山农20; 4: 石4185; 5: 石麦12; 6: 新麦20; 7: 开麦20; 8: 许农5号; 9: 淮麦20; 10: 邢麦13。

M: marker DNA ladder 2000; 1: Jing 411; 2: Luohan 7; 3: Shannong 20; 4: Shi 4185; 5: Shimai 12; 6: Xinmai 20; 7: Kaimai 20; 8: Xunong 5; 9: Huaimai 20; 10: Xingmai 13.

表5 248份小麦品种Ppo-A1和Ppo-D1位点3年发芽指数方差分析

*和**表示在< 0.05和< 0.01水平下差异显著。*and**represent significance at< 0.05 and< 0.01, respectively.

图4 小麦品种Ppo-A1 (A)和Ppo-D1 (B)位点不同等位变异间发芽指数比较

**表示在< 0.01水平下差异显著。圆点: 极端值。**represents significant at< 0.01. Dot: outlier.

2.4 Ppo-A1和Ppo-D1位点不同等位变异组合与穗发芽抗性关系

方差分析发现×互作均方显著, 表明2个位点共同影响穗发芽抗性。4种等位变异组合发芽指数比较分析发现, 不同等位变异组合品种间存在差异。其中,位点低PPO活性等位变异和位点高PPO活性等位变异组合品种(71份)平均发芽指数最低, 为42.52%; 其次为两个低PPO活性等位变异组合品种(64份), 平均发芽指数为46.30%; 两个高PPO活性等位变异组合(48份)发芽指数最高, 平均为50.90%(图5)。4种组合品种中,与相比, 2018年、2019年、2020年和3年平均发芽指数分别降低5.88%、9.19% (< 0.01)、10.10% (< 0.01)和8.39% (< 0.01);与相比, 2018年、2019年、2020年和3年平均发芽指数分别降低4.95%、6.88% (< 0.01)、6.16%和5.99% (< 0.01)。其他等位变异组合间发芽指数无显著差异。

图5 小麦品种Ppo-A1和Ppo-D1位点不同等位变异组合间发芽指数比较

不同字母表示等位变异间发芽指数在0.01水平显著。圆点: 极端值。

Different letters indicate significance at< 0.01 in germination index between alleles. Dot: outlier.

图6 轮选13 ×济麦20群体Ppo-A1位点不同等位变异间发芽指数比较

不同字母表示等位变异间发芽指数在0.01水平显著。

Different letters indicate significant difference at< 0.01 in germination index between alleles.

2.5 轮选13 ×济麦20遗传群体Ppo-A1位点不同等位变异间穗发芽抗性比较

利用PPO18标记分析, 轮选13 × 济麦20 F2群体检测出80株纯合基因型(), 64株纯合基因型(), 122株是杂合基因型()。根据F2和F2:3表型,基因型发芽指数显著低于杂合型和基因型(< 0.01)。与基因型相比,基因型发芽指数在2019年和2020年分别降低9.17% (< 0.01)和4.77% (< 0.01); 与杂合型相比,基因型发芽指数在2019年和2020年分别下降10.44% (< 0.01)和5.48% (< 0.01) (图6)。基因型与杂合型间发芽指数差异不显著。

2.6 不同基因型PPO活性以及Ppo-A1和Ppo-D1基因表达分析

4种等位变异组合品种、、和的平均PPO活性分别为19.32、20.13、5.00和4.33 (A475nmmin–1g–1×103)。其中, 组合和的PPO活性和发芽指数显著低于和组合(< 0.01) (图7-A)。在轮选13 × 济麦20 F2:3群体中, 基因型和平均PPO活性分别为19.33和9.62 (A475nmmin–1g–1×103), 两种基因型间在PPO活性和发芽指数上同样存在极显著差异(< 0.01) (图7-B)。相关分析发现, 40个等位变异组合品种PPO活性与发芽指数呈极显著正相关(= 0.80,< 0.01), 并且在F2:3群体中40个家系PPO活性与发芽指数同样呈现极显著正相关(= 0.74,< 0.01)。qRT-PCR分析发现, 在低发芽指数和组合品种中基因相对表达量要低于高发芽指数的和组合品种(图8-A), 相比之下,基因表达量无明显差异(图8-B)。在轮选13 × 济麦20 F2:3群体中, 两种不同基因型间基因相对表达量存在显著差异(图8-C)。

3 讨论

本研究发现, 供试小麦品种间发芽指数存在较大差异。其中, 丰产3号、百农3217和洛旱11等白粒品种以及扬麦20、扬麦15和扬麦16等红粒品种发芽指数较低, 表明这些品种具有很好的穗发芽抗性, 而且它们大部分曾经是各自生态区主推的小麦品种, 具有优良的农艺性状, 可作为抗穗发芽育种的亲本。不同麦区品种穗发芽抗性存在显著差异, 其中, 长江中下游冬麦区供试的17个品种抗穗发芽能力整体较强。可能原因一是这个麦区是穗发芽高发区, 自然选择和育种的有目的选择使品种的穗发芽抗性较强; 二是这些品种大部分是红粒品种, 一般红粒品种比白粒品种的穗发芽抗性更强[8]。

图7 不同基因型品种(A)和轮选13 ×济麦20群体F2:3株系(B)PPO活性比较

不同字母表示基因型间发芽指数或者PPO活性在0.01水平显著。

Different letters indicate significant difference at< 0.01 in germination index (GI) / PPO activity among genotypes.

图8 不同基因型品种(A和B)和轮选13 ×济麦20群体F2:3株系(C) Ppo-A1和Ppo-D1基因实时定量表达分析

不同字母表示基因型间发芽指数或者基因相对表达水平在0.01水平显著。

Different letters indicate significant difference at< 0.01 in germination index (GI) / relative expression level among genotypes.

本研究通过对248份主栽品种和位点等位变异与穗发芽抗性关系分析表明, 携带低PPO活性等位变异的小麦品种发芽指数显著低于携带高PPO活性等位变异的品种。利用轮选13 × 济麦20组合F2和F2:3分离群体验证得出相同的结论。在位点, 两种等位变异间穗发芽抗性差异不显著。张立平等[33]利用中优9507 × CA9632 DH群体在染色体2AL和2DL上发现了2个控制小麦PPO活性主效QTL, 分别解释表型变异37.9%~50.0%和25.0%~29.1%, 说明位点对PPO活性的效应小于位点。携带的品种PPO活性(单位为A475nmmin–1g–1×103)为40.5, 携带的品种PPO活性为20.6, 两者相差19.9; 携带的品种PPO活性为27.5, 携带的品种PPO活性为34.5, 两者相差7.0[26]。在某些遗传背景下,位点不同等位变异之间PPO活性无差异或呈现相反的表型, 即含有等位变异却表现高PPO活性[32]。通过对40个主栽品种PPO活性测定发现, 携带等位变异的品种为12.18,等位变异的品种为13.91, 两者间无显著差异。由此可见,位点效应较小, 并且不同等位变异间PPO活性无明显差异, 可能是导致该位点不同等位变异间穗发芽抗性差异不显著的主要原因。

Nilthong等[32]发现,位点杂合基因型PPO活性介于两种纯合基因型之间, 尽管略高于双亲的平均值, 但明显低于纯合基因型。在轮选13 × 济麦20群体中, 纯合高PPO活性等位变异基因型和杂合基因型材料的发芽指数相近, 而且均显著高于纯合低PPO活性等位变异基因型, 由此可见, 杂合基因型发芽指数明显偏离中亲值, 具体原因有待进一步研究。但值得注意的是在轮选13 × 济麦20 F2和F2:3群体中杂合基因型均表现出与纯合高PPO活性基因型相近的高发芽指数, 高PPO活性基因表现出显性效应。

方差分析发现,×互作均方显著, 表明两个位点共同影响穗发芽抗性, 但4种等位变异组合发芽指数比较分析发现, 2个低PPO活性等位变异组合品种(64份, 46.30%)的发芽指数并非最低, 而是组合(71份, 42.52%)的发芽指数最低, 且分别低于携带等位变异(44.31%)和(45.90%)品种在单个位点的发芽指数; 加之在单个位点, 等位变异和相对于同一位点另一个等位变异具有更好的穗发芽抗性。由此可见,组合具有更低的发芽指数可能是等位变异和的累加效应造成的结果。

降低PPO活性是重要的小麦品质育种目标, 根据优良等位基因开发的功能标记已经用于低PPO活性材料筛选[34]。本研究表明,功能标记可以同时用于穗发芽抗性的选择, 为选育优质、抗穗发芽品种提供了重要信息。抗穗发芽基因的分子标记辅助选择技术在许多国家的小麦育种中广泛应用[15,35], 选择同时具有抗穗发芽基因和低PPO活性基因可能是提高穗发芽抗性的重要育种途径之一。

4 结论

我国小麦育成品种间发芽指数变异较大。和位点发芽指数受年份、位点以及×互作共同影响。位点不同等位变异间穗发芽抗性差异显著;位点等位变异间发芽指数没有显著差异。4种等位变异组合品种中, 具有的品种发芽指数最低(42.52%),组合次之(46.30%)。轮选13 × 济麦20遗传群体研究结果进一步证明低PPO活性等位变异与穗发芽抗性显著相关, 这个等位变异分子标记可用于穗发芽抗性育种的分子标记辅助选择。

[1] Li H J, Zhou Y, Xin W L, Wei Y Q, Zhang J L, Guo L L. Wheat breeding in northern China: achievements and technical advances., 2019, 7: 718–729.

[2] Ali A, Cao J J, Jiang H, Chang C, Zhang H P, Sheikh S W, Shah L, Ma C X. Unraveling molecular and genetic studies of wheat (L.) resistance against factors causing pre-harvest sprouting., 2019, 9: 117.

[3] Depauw R M, Knox R E, Singh A K, Fox S L, Humphreys D G, Hucl P. Developing standardized methods for breeding pre-harvest sprouting resistant wheat, challenges and successes in Canadian wheat., 2012, 188: 7–14.

[4] Liu C X, Ding F, Hao F H, Yu M, Lei H H, Wu X Y, Zhao Z X, Guo H X, Yin J, Wang Y L. Reprogramming of seed metabolism facilitates pre-harvest sprouting resistance of wheat, 2016, 6: 20593.

[5] Zhu Y L, Wang S X, Wei W X, Xie H Y, Liu K, Zhang C, Wu Z Y, Jiang H, Cao J J, Zhao L X. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (L.), 2019, 132: 2947–2963.

[6] Liu Y J, Liu Y X, Zhou Y, Wight C, Pu Z, Qi P F, Jiang Q T, Deng M, Wang Z X, Wei Y M. Conferring resistance to pre-harvest sprouting in durum wheat by a QTL identified in, 2017, 213: 19.

[7] Shao M Q, Bai G H, Rife T W, Jesse P, Lin M, Liu S B, Cai H, Tadele K, Allan F, Harold T. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby, 2018, 131: 1683–1697.

[8] Vetch J M, Stougaard R N, Martin J M, Giroux M J. Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (L.), 2019, 281: 180–185.

[9] Zhang Y J, Xia X C, He Z H. The seed dormancy alleleassociated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces, 2017, 130: 81–89.

[10] Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination., 2011, 23: 3215–3229.

[11] Himi E, Noda K. Red grain colour gene () of wheat is a Myb-type transcription factor., 2005, 143: 239–242.

[12] Yang G H, Zhao X Q, Li B, Liu J Z, Li Z S. Molecular cloning and characterization of a DFR from developing seeds of blue-grained wheat in anthocyanin biosynthetic pathway, 2003, 45: 1329–1338.

[13] Bailey P C, Mckibbin R S, Lenton J R, Holdsworth M J, Flintham J E, Gale M D. Genetic map locations for orthologousgenes in wheat and rice., 1999, 98: 281–284.

[14] Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, Matsumoto T, Kawaura K, Ogihara Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase, 2016, 26: 782–787.

[15] Lin M, Liu S B, Zhang G R, Bai G H. Effects ofandgenes on wheat pre-harvest sprouting resistance, 2018, 8: 210.

[16] 吴玉良, 杨煜峰. 无原花色素大麦突变体穗发芽的研究. 浙江农业大学学报, 1996, 22: 647–650.

Wu Y L, Yang Y F. Study on pre-harvest sprouting of barley mutants without proanthocyanidins., 1996, 22: 647–650 (in Chinese with English abstract).

[17] Weidner S, Krupa U, Amarowicz R, Karamac M, Abe S. Phenolic compounds in embryos of triticale caryopses at different stages of development and maturation in normal environment and after dehydration treatment., 2002, 126: 115–122.

[18] 魏海蓉, 高东升, 李宪利. 植物生长调节剂对甜樱桃休眠的调控及花芽酚类物质含量的影响. 园艺学报, 2005, 32: 17–21.

Wei H R, Gao D S, Li X L. Effects of plant growth regulators on the content of phenolics in sweet cherry dormant flower buds and dormancy., 2005, 32: 17–21 (in Chinese with English abstract).

[19] 宋亮, 潘开文, 王进闯, 马玉红. 酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响. 生态学报, 2006, 10: 3393–3403.

Song L, Pan K W, Wang J C, Ma Y H. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa., 2006, 10: 3393–3403 (in Chinese with English abstract).

[20] Esmaeili N, Ebrahimzadeh H, Abdi K. Correlation between polyphenol oxidase (PPO) activity and total phenolic contents inL. Corms during dormancy and sprouting stages., 2017,13: S519–S524.

[21] Demeke T, Morris C F, Campbell K G, King G E, Anderson J A, Chang H G. Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations, 2001, 41: 1750–1757.

[22] Baik B, Czuchajowska Z, Pomeranz Y. Comparison of polyphenol oxidase activities in wheats and flours from Australian and US cultivars, 1994, 19: 291–296.

[23] 王宝凤, 付金锋, 董立峰. 多酚氧化酶活性与小麦抗穗发芽的关系及抗穗发芽新品种秦麦3号的选育. 麦类作物学报, 2006, 29: 97–100.

Wang B F, Fu J F, Dong L F. The Relationship between activity of polyphenol oxidase and resistance to pre-harvest sprouting in wheat and breeding of Qinmai 3 with high resistance to PHS., 2006, 29: 97–100 (in Chinese with English abstract).

[24] 王宝凤, 杨雪, 付金锋, 董立峰, 马理. 低酚酶活性选择对小麦穗发芽的影响. 核农学报, 2015, 29: 899–907.

Wang F B, Yang X, Fu J F, Dong L F, Ma L. Effects of consecutive selection for low polyphenol oxidase activity on wheat pre-harvest sprouting., 2015, 29: 899–907 (in Chinese with English abstract).

[25] Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase acti­vity in bread wheat., 2005, 16: 209–218.

[26] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat., 2007, 115: 47–58.

[27] 买春艳, 李洪杰, 刘宏伟, 杨丽, 于立强, 周阳, 张宏军. 北方冬麦区小麦品种产量相关性状和幼穗分化特点研究. 麦类作物学报, 2018, 7: 773–781.

Mai C Y, Li H J, Liu H W, Yang L, Yu L Q, Zhou Y, Zhang H J. Characterization of yield related traits and inflorescence differentiation in representative wheat cultivars from the northern China winter wheat region., 2018, 7: 773–781 (in Chinese with English abstract).

[28] Martinez S A, Godoy J, Huang M, Zhang Z W, Carter A H, Garland Campbell K A, Steber C M. Genome-wide association mapping for tolerance to pre-harvest sprouting and low falling numbers in wheat, 2018, 9: 141.

[29] Anderson J V, Morris C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity., 2001, 41: 1697–1705.

[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod., 2001, 25: 402–408.

[31] Jin H, Wen W E, Liu J D, Zhai S N, Zhang Y, Yan J, Liu X Y, Xia X C, He Z H. Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population, 2016, 7: 1032.

[32] 张立平, 葛秀秀, 何中虎, 王德森, 闫俊, 夏先春, Sutherland M W. 普通小麦多酚氧化酶活性的QTL分析. 作物学报, 2005, 31: 7–10.

Zhang L P, Ge X X, He Z H, Wang D S, Yan J, Xia X C, Sutherland M W. Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat., 2005, 31: 7–10 (in Chinese with English abstract).

[33] Nilthong S, Graybosch R A, Baenziger P S. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (L.) genetic backgrounds, 2012, 125: 1705–1715.

[34] 张晓, 高德荣, 李曼, 刘大同, 吴素兰, 江伟, 吕国锋. 小麦面粉和鲜面片色泽及与等位变异检测. 麦类作物学报, 2019, 39: 415–422.

Zhang X, Gao D R, Li M, Liu D T, Wu S L, Jiang W, Lyu G F. Color of flour and fresh dough sheet of wheat varieties and detection of allelic variations for genesand., 2019, 39: 415–422 (in Chinese with English abstract).

[35] Kato K, Maruyama-Funatsuki W, Yanaka M, Ban Y, Takata K. Improving preharvest sprouting resistance in durum wheat with bread wheat genes., 2017, 67: 466–471.

Relationship between the allelic variations at theandloci and pre-harvest sprouting resistance in wheat

HUANG Yi-Wen1, DAI Xu-Ran1, LIU Hong-Wei1, YANG Li1, MAI Chun-Yan2, YU Li-Qiang2, YU Guang-Jun3, ZHANG Hong-Jun1,*, LI Hong-Jie1,*, and ZHOU Yang1,*

1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Laboratory for Crop Molecular Breeding, Beijing 100081, China;2Center for Technological Innovation of Dwarf-male-sterile Wheat Breeding (Xinxiang), Xinxiang 453731, Henan, China;3Zhaoxian Experiment Station, ShijiazhuangAcademy of Agricultural and Forestry Sciences, Zhaoxian 051530, Hebei, China

andare the major genes that control the activity of polyphenol oxidase (PPO) in wheat. It has been reported that the activity of polyphenol oxidase affects pre-harvest sprouting (PHS) resistance, but the effect of different alleles/allelic combinations at theandloci on PHS resistance remains unclear. The current study was carried out to elucidate the effects based on the germination index obtained from 248 Chinese wheat cultivars in a three-year trial in combination with genotypic data at theandloci. Analysis of variation for theandloci showed that year,locus and×interaction had significant effects on germination index. At locus, germination index of cultivars carrying the alleleof low PPO activity was 5.22% lower than that carrying the alleleof high PPO activity on average. In contrast, the cultivars carrying the alleleof low PPO activity had higher germination index than that carrying the alleleof high PPO activity at locus, but no significant differences between two alleles. Among the four allelic combinations, the cultivars with thehad the lowest germination index. The relationship between the alleles at locusand PHS resistance had been verified in the Lunxuan 13 ×Jimai 20 F2and F2:3segregationpopulations. There were significantly positive correlations between PPO activity / relative expression level ofgene and germination index. This study suggests that functional markers ofallelecan be effectively applied in marker-assisted selection for PHS resistance.

; the breeding for resistance to pre-harvest sprouting; polyphenol oxidase;allele; molecular marker-assisted selection

10.3724/SP.J.1006.2021.01089

本研究由河北省现代种业科技专项(19226351D), 国家重点研发计划项目(2017YFD0101000)和中国农业科学院创新工程项目资助。

This study was supported by the Science and Technology Project for Modern Seed Industry of Hebei (19226351D), the National Key Research and Development Program of China (2017YFD0101000), and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.

张宏军, E-mail: zhanghongjun01@caas.cn; 李洪杰, E-mail: lihongjie@caas.cn; 周阳, E-mail: zhouyang@caas.cn

E-mail: 18838916683@163.com

2020-11-20;

2021-03-19;

2021-04-01.

URL: https://kns.cnki.net/kcms/detail/11.1809.S.20210401.1308.009.html

猜你喜欢
济麦基因型抗性
HBV基因型的研究现状与发展趋势探讨
PD-1和CTLA-4 3′UTR基因交互作用在HBV感染中的作用*
不忘初心,回归经典!养虾至暗时刻,海茂坚定高抗苗,携抗性更强“普利茂”回来了
冻干益生菌微胶囊保护剂及抗性研究
营养强化型紫色小麦的食品品质改良研究
空气环境中抗生素抗性基因研究进展
山东“袁隆平”的麦田人生
山东“袁隆平”的麦田人生
数学工具在自交和自由交配相关计算中的应用探讨
锥栗抗性淀粉消化前后的益生作用及结构变化研究