一类非线性混沌动力系统分析

2021-09-17 10:42王磊张勇舒永录
浙江大学学报(理学版) 2021年5期
关键词:有界高维王磊

王磊,张勇*,舒永录

一类非线性混沌动力系统分析

王磊1,张勇1*,舒永录2

(1.河南工业职业技术学院 基础教学部,河南 南阳 473000; 2.重庆大学数学与统计学院,重庆 401331)

根据混沌动力系统的稳定性理论,通过引入广义李雅普诺夫函数,研究了一类广义大气混沌动力系统的全局指数吸引集与最终界,并给出了相应的Matlab仿真。研究结果可为研究大气混沌动力系统的运动提供理论依据,也可用于研究该混沌动力系统的混沌控制和同步。

大气混沌动力系统;混沌吸引子;全局吸引集;混沌控制

0 引言

1963年,LORENZ[1]发现了具有蝴蝶效应的混沌吸引子,称Lorenz混沌吸引子,其为研究混沌动力系统的第一个混沌模型。随后众多学者关注并研究Lorenz混沌系统的动力学特性[2-10],并引发了对其他新混沌系统的探索和研究热潮[11-31]。高维混沌系统在混沌保密通信、自动控制理论等领域具有较好的应用前景[20],因此,研究新型高维混沌系统的非线性动力学特性很有必要。

一类高维大气混沌动力系统的数学模型为[21]

其中,为正参数。为描述大气气流旋转的变量,为普朗特常数,为瑞利常数,为几何参数,为控制小参数。当时,式(1)在三维空间上的混沌吸引子如图1所示;在平面上的混沌吸引子如图2所示。

图2 式(1)在平面上的混沌吸引子

1 主要理论及结果

考虑自治动力系统

则称式(2)存在全局指数吸引集

文献[21]对式(1)的奇点稳定性、奇点局部分岔、混沌控制和混沌同步等进行研究,下面将根据动力系统稳定性理论研究式(1)的最终界和全局指数吸引集。

引理1 定义

则有

证明 由对称性,显然有

求偏导数,令

此时有

引理2[28]定义集合

则有

其为式(1)的最终有界集和不变集,且

证明 定义

定义

引入新变量

则有

由引理1,有

证毕。

其为式(1)轨线的最终有界集,其中,

因此,混沌吸引子在xoyz空间中的界估计如图3所示。

为式(1)轨线的最终有界集,其中,

则有

定义

由引理2,可得

证毕。

此为式(1)的最终界,其在yoz平面上的混沌吸引子界估计如图4所示。

虽然由定理1和定理2得到的混沌系统式(1)的最终解是有界的,但尚未知式(1)是否存在全局指数吸引集,为此,估计式(1)从吸引集外的轨线进入吸引集轨线的速率,有

则式(1)有指数估计式:

从而有

其为式(1)的全局指数吸引集。

证明 定义

求导数

利用比较定理对上式两边积分,有

式(12)两边取上极限,有

因而

为式(1)的全局指数吸引集。

证毕。

为式(1)的全局指数吸引集,其中,

2 结论

根据混沌动力系统稳定性理论,研究了一类广义大气混沌动力系统的全局指数吸引集和最终界,并给出了相应结果的Matlab仿真。

[1]LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences,1963,20(2): 130-141. DOI:10.1175/1520-0469(1963)020〈0130:dnf〉2.0.co;2

[2]DOEDEL E J,KRAUSKOPF B,OSINGA H M. Global organization of phase space in the transition to chaos in the Lorenz system[J]. Nonlinearity,2015,28(11): 113-139. DOI:10.1088/0951-7715/28/11/r113

[3]SPARROW C. The Lorenz Equations: Bifurcations,Chaos,and Strange Attractors[M]. New York:Springer Science & Business Media,2012: 20-30.

[4]STEWART I. The Lorenz attractor exists[J]. Nature,2000,406: 948-949. DOI:10.1038/35023206

[5]LEONID A B. Short-and long-term forecast for chaotic and random systems (50 years after Lorenz's paper)[J]. Nonlinearity,2014,27: 51-60. DOI:10.1088/0951-7715/27/9/r51

[6]POGROMSKY A Y,SANTOBONI G,NIJMEIJER H. An ultimate bound on the trajectories of the Lorenz systems and its applications[J]. Nonlinearity,2003,16:1597-1605. DOI:10.1088/0951-7715/16/5/303

[7]LIBRE J,ZHANG X. Invariant algebraic surfaces of the Lorenz system[J]. Journal of Mathematical Physics,2002,43: 1622-1645. DOI:10.1063/1. 1435078

[8]ZHANG F C,LIAO X F,ZHAGN G Y. Some new results for the generalized Lorenz system[J]. Qualitative Theory of Dynamical Systems,2017,16(3): 749-759. DOI:10.1007/s12346-016-0206-z

[9]ZHANG F C,ZHAGN G Y. Further results on ultimate bound on the trajectories of the Lorenz system[J]. Qualitative Theory of Dynamical Systems,2016,15(1): 221-235. DOI:10.1007/s12346-015-0137-0

[10]ZHANG F C,MU C L,ZHOU S M,et al. New results of the ultimate bound on the trajectories of the family of the Lorenz systems[J]. Discrete and Continuous Dynamical Systems(Series B),2015,20(4): 1261-1276. DOI:10.1016/j.cnsns.2010.05.032

[11]YANG T,YANG Q G. A 3D autonomous system with infinitely many chaotic attractors[J]. International Journal of Bifurcation and Chaos,2019,29(12): 1950166. DOI:10.1142/s021812 7419501669

[12]CHEN G R,UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos,1999,9(7): 1465-1466.

[13]LU J H,CHEN G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos,2002,12(3): 659-661. DOI:10.1142/s0218 127402004620

[14]LU J,CHEN G,CHENG D,et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos,2002,12(12): 2917-2926. DOI:10.1142/s021812740200631x

[15]ZHANG F C,LIAO X F,MU C L,et al. On global boundedness of the Chen system[J]. Discrete and Continuous Dynamical Systems(Series B),2017,22(4): 1673-1681. DOI:10.3934/dcdsb.2017080

[16]ZHANG F C,LIAO X F,ZHAGN G Y. On the global boundedness of the Lü system[J]. Applied Mathematics and Computation,2016,284: 332-339. DOI:10.1016/j.amc.2016.03.017

[17]ZHANG F C,CHEN R,WANG X Y,et al. Dynamics of a new 5D hyperchaotic system of Lorenz type[J]. International Journal of Bifurcation and Chaos,2018,28(3): 1850036.

[18]ZHANG F C,LIAO X F,ZHAGN G Y,et al. Dynamical analysis of the generalized Lorenz systems[J]. Journal of Dynamical and Control Systems,2017,23(2): 349-362. DOI:10.1007/s10883-016-9325-8

[19]ZHANG F C,LIAO X F,ZHAGN G Y,et al. Dynamical behaviors of a generalized Lorenz family[J]. Discrete and Continuous Dynamical Systems(Series B),2017,22(10): 3707-3720. DOI:10. 3934/dcdsb.2017184

[20]FOWLER A C,GIBBON J D,MCGUINNESS M J. The complex Lorenz equations[J]. Physica D,1982(4): 139-163. DOI:10.1016/0167-2789(82)90057-4

[21]WANG H J,LI X Y. Infinitely many heteroclinic orbits of a complex Lorenz system[J]. International Journal of Bifurcation and Chaos,2017,27: 1750110. DOI:10.1142/s0218127417501103

[22]LIU Z L,WANG C N,JIN W Y,et al. Capacitor coupling induces synchronization between neural circuits[J]. Nonlinear Dynamics,2019,97: 2661-2673. DOI:10.1007/s11071-019-05155-7

[23]ZHAO Y,MA J,YAO Y G,et al. Synchronization realization between two nonlinear circuits via an induction coil coupling[J]. Nonlinear Dynamics,2019,96: 205-217. DOI:10.1007/s11071-019-04784-2

[24]ZHAO Y,ZHOU P,ALSAEDI A,et al. Energy flow-guided synchronization between chaotic circuits[J]. Applied Mathematics and Computation,2020,374: 124998. DOI:10.1016/j.amc.2019.124998

[25]MA J,WU F Q,JIN W Y,et al. Calculation of Hamilton energy and control of dynamical systems with different types of attractors[J]. Chaos,2017,27(5): 053108. DOI:10.1063/1.4983469

[26]WANG X Y,FENG L,LI R,et al. A fast image encryption algorithm based on non-adjacent dynamically coupled map lattice model[J]. Nonlinear Dynamics,2019,95: 2797-2824. DOI:10.1007/s11071-018-4723-y

[27]WANG X Y,ZHAGN J J,ZHANG F C,et al. New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding[J]. Chinese Physics B,2019,28(4): 040504. DOI:10.1088/1674-1056/28/4/040504

[28]ZHANG F C,LI Y H,MU C L. Bounds of solutions of a kind of hyper-chaotic systems and application[J]. Journal of Mathematical Research with Applications,2013,33(3): 345-352.

[29]LI D M,WU X Q,LU J A. Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system[J]. Chaos,Solitons & Fractals,2009,39: 1290-1296. DOI:10.1016/j.chaos.2007.06.038

[30]LIAO X X,FU Y L,XIE S L,et al. Globally exponentially attractive sets of the family of Lorenz systems[J]. Science in China (Series F): Information Sciences,2008,51:283-292. DOI:10. 1007/s11432-008-0024-2

[31]ZHANG F C. Analysis of a Lorenz-like chaotic system by Lyapunov functions[J]. Complexity,2019,2019: 7812769. DOI:10.1155/2019/7812769

Analysis on a nonlinear chaos dynamical system

WANG Lei1, ZHANG Yong1, SHU Yonglu2

(1473000;2401331)

Based on the stability theory of chaotic dynamical system, the global attractive sets and the ultimate bound set of a class of a generalized atmospheric chaotic system are studied by introducing the generalized Lyapunov function. The corresponding Matlab simulation is demonstrated. Our results provide a theoretical basis for studying the motion of the atmospheric chaotic system and can also be used to study chaos control and chaos synchronization of this chaotic system.

atmospheric chaotic dynamical system; chaotic attractors; globally attractive set; chaos control

10.3785/j.issn.1008-9497.2021.05.005

O 241.84

A

1008⁃9497(2021)05⁃550⁃07

2020⁃05⁃17.

国家自然科学基金资助项目(11171360).

王磊(1982—),ORCID:https://orcid. org /0000-0002-2197-7844,男,硕士,副教授,主要从事应用数学研究,E-mail:wangleibaas@163.com.

,ORCID:https://orcid. org /0000-0001-6973-4529,E-mail:zhangyongzhang2013@163.com.

猜你喜欢
有界高维王磊
基于相关子空间的高维离群数据检测算法
对数Bloch空间上某些算子有界的充要条件
双冗余网络高维离散数据特征检测方法研究
指数有界双连续n阶α次积分C群的次生成元及其性质
模糊赋范空间中的有界性与算子的紧性
基于深度学习的高维稀疏数据组合推荐算法
Carriage to eternity: image of death in Dickinson and Donne
作品选登
不再被“圆”困住
高维洲作品欣赏