市域铁路双边供电系统的稳态潮流

2023-12-21 09:43靳守杰管美玲李鲲鹏
西南交通大学学报 2023年6期
关键词:合环环网市域

靳守杰 ,管美玲 ,李鲲鹏

(1.西南交通大学电气工程学院,四川 成都 611756;2.广州地铁集团有限公司,广东 广州 510330;3.广州地铁设计研究院股份有限公司,广东 广州 510010)

市域铁路是都市圈内客运轨道交通的组成部分,随着我国城市化水平不断提高,大城市空间结构逐渐由单中心向多中心演化,中心城与外围新城间交通需求也日益增长,市域铁路成为解决该交通需求的有效途径.

市域铁路兼具干线铁路和城市轨道交通的特征.针对其运输需求,借助干线铁路已经发展起来的同相供电技术[1-2],市域铁路的单相交流牵引供电可采用双边供电,取消分区所处电分相环节,提升牵引供电系统供电能力及供电可靠性.综合分析单边和双边供电的技术经济指标[3],双边供电最大的优点是提高牵引网电压水平,且在稳态情况下,实施双边供电能够满足电力系统的要求[4].采用双边供电技术会增加既有继电保护对牵引网故障的识别难度,因此,可采用牵引网分段供电与测控技术[5-7],将供电臂适当分段,运用同步测量技术,更准确、及时地判别故障类型与部位,将故障限制在最小范围内,最大限度地保证牵引网的可靠性和可用性.可通过建立双边供电等值电路,得到均衡电流的计算模型[3];或在分区所测量两侧牵引网的电压,利用两侧牵引网均为空载时,两侧牵引母线的电压差除以折算至牵引侧的系统总阻抗预估均衡电流[8].可在变电所馈线串接电抗器或将牵引变压器制成高漏抗牵引变压器[2],或通过适用于交流电气化铁路牵引供电的移相器减小均衡电流[9],也可以通过选择合适的外部电源构成树形双边供电,达到没有均衡电流的目的[10].目前,市域铁路的研究主要集中于牵引电缆贯通供电方案,并对该方案进行了建模和潮流计算[11].本文主要分析市域铁路在牵引侧双边供电运行,改变城市电网在配电网侧辐射状的电网结构,双边供电可能跨越较多的电压等级,构成电磁环网结构,需分析双边供电系统中“电磁环网”的潮流分布和对电力系统的影响,给出不同外部电源均衡电流的计算模型,并得到其影响及其相应的控制措施.结合工程案例,推导多个牵引变电所双边供电时均衡电流的计算模型,对市域铁路单相交流牵引供电采用双边供电时的潮流、均衡电流进行计算,分析双边供电的可行性.

1 电磁环网分析

1.1 电磁环网形成的原因

电磁环网是由2 组不同电压等级的输电线路通过变压器T1、T2 磁回路的联结并列运行而形成的环形电力网[12],一般形成于相邻的2 个电压等级间,典型的电磁环网如图1 所示,图中:、ZS分别为环网中的电压和等值电阻,S为环网中的潮流.

图1 典型的电磁环网Fig.1 Typical electromagnetic loop network

1.2 双边供电系统中“电磁环网”分析

在双边供电系统中,牵引变电所间牵引网联通成为电力系统的并联支路,类似于电力系统中的电磁环网,然而二者也有显著的不同,电力系统中存在三相电压(电流)),但电气化铁路双边供电仅是某一相连通而不是三相连通,如图2 所示[13],T 为接触线,R 为钢轨.

图2 潮流转移Fig.2 Flow transfer

双边供电系统中“电磁环网”存在潮流转移和穿越功率的问题.

1)潮流转移:当相邻两牵引变电所SS1、SS2间三相输电线发生故障时,根据选择性,仅断开K1及K2,由于双边供电分区所(SP)两侧供电臂被联通,三相输电线A 相及B 相功率可经牵引网继续传导,牵引变电所连接到高压侧的公共连接点PCC,K、PCC,K+1之间的电气距离大大增加,系统稳定性水平可能下降,其中,K为牵引变电所序号.

2)穿越功率:牵引网作为电力系统的一个支路,会在电力系统中形成许多环网,电力系统中负荷潮流流过时,产生的穿越功率同时会在牵引网上造成分流,即均衡电流.

2 均衡电流分析

2.1 均衡电流影响分析

均衡电流的影响主要体现在:1)电压损失,均衡电流会在牵引网上产生额外的电压降.2)电能损失,均衡电流通过牵引网会产生额外电能损失.3)影响牵引变压器,穿越功率是牵引供电系统实行双边供电时额外增加的功率,会额外占用牵引变压器部分容量;4)对电度计量的影响,若电度表可以反转,牵引变电所Q1 只多计量均衡电流引起的牵引网损耗;若电度表不能反转,则从点a、b流入的穿越功率都将被计量表所计量,如图3 所示[3],为环网中的电流,k为牵引变压器统一变比,V、X 对应V 型和X 型接线方式.

图3 双边供电系统电能计量Fig.3 Energy metering in bilateral power supply system

2.2 均衡电流计算

双边供电根据外部电源供电方式的差异可分为平行双边供电和树形双边供电,有不同的等值电路模型,计算均衡电流时需分开讨论.平行双边供电的外部电源供电方式包括双侧单回路、双侧双回路等,即牵引供电系统两侧均有三相电源的供电方式以及非终端情形的单侧双回路供电方式,此时,牵引网作为电力系统的一个支路,会在电力系统中形成许多个环网,产生均衡电流;树形双边供电的外部电源供电方式为包括牵引供电系统作为终端的单侧双回路供电方式、辐射型供电方式或树形结构供电方式,2 个牵引变电所的电源进线接在变电站同一分段母线的不同分段上,两牵引变电所一次侧进线电压相等,不会产生均衡电流.

2.2.1 平行双边供电均衡电流计算

根据图4 中三相电力输电线的电压差,可以得到

图4 平行双边供电系统等值电路Fig.4 Equivalent circuit diagram of parallel bilateral power supply system

通过2 台牵引变压器原边和次边的节点电压电流关系,可以得到

2.2.2 树形双边供电均衡电流计算

图5 树形双边供电系统等值电路Fig.5 Equivalent circuit diagram of tree bilateral power supply system

2 台牵引变压器原边和次边的节点电压方程为

3 实例分析

以某市域线路为例,其牵引供电系统由110 kV牵引变电所Q1、Q2、Q3、Q4(预留)分段供电.为保证市域铁路的持续可靠供电,考虑运行时将3 个变比为110 kV/27.5 kV 的牵引变压器在低压27.5 kV侧合环运行,实现列车运行的不间断供电.该方案改变了目前城市电网在配电网侧辐射状的电网结构,合环时跨越了较多的电压等级,构成电磁环网结构,因此需要考虑在正常运行时合环线路的潮流情况,防止合环线路潮流穿越功率太大,超过线路的载流能力.牵引变压器可以短时(2 h)承受的最大功率为100 MV·A;110 kV 线路采用的是截面积为1 600 mm2的电缆,能承受的最大电流为1 000 A;27.5 kV 刚性接触网型号为CTA150+HL2213,能承受的最大电流为3 500 A.合环示意如图6 所示.

图6 低压27.5 kV 侧合环运行方案Fig.6 Closing ring operation scheme at low voltage 27.5 kV side

对电网的网架结构初步分析,4 个牵引变电所位于3 个500 kV 供电区,3 个500 kV 变电站之间有潮流分布,如图7 所示.

图7 电网架构Fig.7 Power grid architecture

图8 市域线路均衡电流的计算模型Fig.8 Calculation model of equilibrium current for suburban lines

3.1 合环线路均衡电流分析

3.1.1 合环线路均衡电流计算

表1 变电所正常运行时牵引负荷Tab.1 Traction loads at substations

利用叠加原理,得到牵引变电所Q1、Q2、Q3 到合环点的均衡电流分别为

根据电网架构和线路的参数,测得电网正常运行和出现各类故障(110、220 kV 电网侧环网故障解环)时各牵引变电所110 kV 高压侧电压的变化范围,Q1 高压侧的电压为110∠-26.052°~110∠-26.881° kV,Q2 高压侧的电压为110∠-29.409°~110∠-29.513° kV,Q3 高压侧的电压为110∠-32.897°~110∠-33.236° kV,可计算Q1 与Q2 高压侧的电压相角差α12变化范围约为0~4°,Q1 与Q3 高压侧的电压相角差α13变化范围约为0~8°,Q2 与Q3 高压侧的电压相角差α23变化范围约为0~4° 时合环线路上的均衡电流大小,如图9 所示.

图9 牵引变电所Q1、Q2、Q3 到合环点的均衡电流计算值Fig.9 Calculation values of equilibrium currents from traction substation Q1,Q2,Q3 to loop closing point

由图9 可知:3 个牵引变电所的电压相角差为0 时,均衡电流也为0;牵引变电所到合环点的均衡电流随着该牵引变电所与其余牵引变电所的电压相角差增大而增大;3 个牵引变电所的穿越功率最大值为1.500、1.375、1.125 MV·A,穿越功率占牵引变压器容量比最大为3%.

3.1.2 合环线路均衡电流仿真

在MATLAB/simulink 软件中建立合环线路均衡电流的仿真模型,如图10 所示,并进行仿真计算,得到牵引变电所Q1、Q2、Q3 到合环点的均衡电流仿真值如图11 所示.

图10 合环线路均衡电流的计算模型Fig.10 Calculation model of equilibrium currents in closed-loop lines

图11 牵引变电所Q1、Q2、Q3 到合环点的均衡电流仿真值Fig.11 Simulation values of equilibrium currents from traction substation Q1、Q2、Q3 to loop closing point

使用合环线路均衡电流的仿真结果验证均衡电流计算模型的正确性,得出均衡电流的最大值为60.264 A,占比为2.322%.

3.2 合环线路潮流仿真

使用MATLAB/simulink 软件搭建牵引变电所Q1、Q2、Q3、Q4 在27.5 kV 侧合环运行的市域铁路牵引供电系统模型,如图12 所示,仿真模型中E、F、G、H、I、J、K 为系统侧电力变压器,L1~L10 为系统侧输电线路阻抗,仿真考虑市域铁路供电在夜间停运和高峰时段运行2 种工况.

图12 市域铁路牵引供电系统仿真模型Fig.12 Simulation model of traction power supply system for suburban railways

夜间解环、夜间合环、高峰时段合环、牵引供电所解列时电网的潮流分布,如图13 所示,牵引变压器承受的最大功率为70.36 MV·A,电压波动最大为0.702 5%,在牵引变压器承受范围内;110 kV 线路承受的最大电流为833.418 A,27.5 kV 接触网承受的最大电流为2595.789 A,均未超过线路载流能力.

图13 合环线路潮流仿真(MV·A)Fig.13 Power flow simulation for loop closing line (MV·A)

4 结论

市域铁路单相交流牵引供电系统采用双边供电方式时,可能存在电磁环网和均衡电流的问题.

1)电磁环网:双边供电系统中“电磁环网”主要存在潮流转移和穿越功率的问题,潮流转移可能会影响系统稳定性,穿越功率会在牵引网上造成均衡电流.

2)均衡电流:双边供电系统的均衡电流与外部电源供电方式有关,若施行双边供电的两牵引变电所进线处存在电压差,则会导致在牵引网上产生分流,即均衡电流.外部电源呈树形结构时,牵引变电所的电源进线来自一个电力变电站同一分段母线的不同分段,电压差为0,因此树形双边供电不产生均衡电流.国家标准中并没有明确给出均衡电流的取值范围,只能通过减小电力系统变电所间等值阻抗或增大牵引供电系统阻抗达到减小均衡电流的目的.

3)以某市域线路为例进行仿真计算可以发现,双边供电系统中“电磁环网”对电网的潮流分布的影响均在牵引变压器、线路的承受范围内,即双边供电在稳态情况下不会对电网的安全运行造成影响;合环线路中均衡电流占比为2.322%,侧面反映均衡电流对系统影响较小.但这些结论只针对目前分析的市域线路,其余的市域线路如果要采用双边供电还需根据实际情况分析.

致谢:广州地铁设计研究院股份有限公司科技项目(R110421H01090).

猜你喜欢
合环环网市域
一种基于分层前探回溯搜索算法的合环回路拓扑分析方法
基于ODUk Spring方式实现基础网络环网保护的研究
市域(郊)铁路功能定位与系统制式选择分析
市域铁路信号系统互联互通方案研究
10千伏配电网合环操作
高速公路万兆环网建设探析
10kV配网合环转供电应注意的事项
配电网合环转供电研究及辅助软件开发
基于CAN的冗余控制及其在轨道交通门禁环网中的应用
万兆环网在京秦高速智能化监控中的应用