具有时间依赖的时滞半线性二阶发展方程的能控性和适定性

2024-04-04 14:06施翠云宾茂君
关键词:时滞

施翠云 宾茂君

摘要:考慮状态依赖时滞的二阶发展微分方程的能控性和适定性.首先,利用不动点定理证明状态依赖时滞的二阶发展微分方程的可控性;其次,在适当条件下证明状态依赖时滞的二阶发展微分方程是适定的;最后,通过实例验证主要结果.

关键词:时滞;抽象微分方程;二阶发展方程;能控性;适定性

中图分类号:O 175.15文献标志码:A文章编号:1001-988Ⅹ(2024)02-0014-07

Controllability and well posedness for second orderevolution differential equations

SHI Cui-yun BIN Mao-jun

Abstract:This paper considers the controllability and well posedness of second order evolution differential equations with state dependent delay.Firstly,the controllability is proved for second order evolution differential equations with state dependent delay by using the fixed point theorem;Secondly,it is proved that the developed differential equation are well posed under appropriate conditions.In the end,an example is provided to represent the theory.

Key words:time delay;abstract differential equation;second order evolution equation;constrollability;well posedness

0 引言

二阶微分方程在变分学中有着广泛的应用.在过去,人们对具有状态时滞的抽象微分方程给予了极大关注[1-7].2011年,Arthi等[8]考虑了二阶微分方程解的存在性和可控性.可控性在控制理论的研究中扮演着重要角色,它主要是在系统中寻找控制函数使得系统状态达到理想状态,关于可控性研究的结果可见文献[9-14].

设(X,·)是Banach空间.本文研究二阶时滞状态依赖微分方程

这里,控制函数u(·)∈ζ ([0,b];U),U是Banach空间,B:UX是一个有界线性函数,A(t)表示S(t,s)的无穷小生成元,ξ(·),σ(·)是适当的函数;函数yt:(-∞,0]X,yt(θ)=y(t+θ)是特定抽象相空间B的一个生成元;σ:ζ×B(-∞,b]为适定的函数.

抽象微分方程的状态时滞和可控性是当前研究的一个热门话题.文献[15-19]给出了时滞微分方程的可控性结果.近年来,Hernandez 等[20]和Rezounenko[21]研究了时滞抽象微分方程和一阶偏微分方程解的存在性.本文在Hino[22]工作的基础上研究时滞二阶发展方程解的存在性和可控性.通过借鉴文献[20]和[21]的方法,在函数y→ξ(·,yσ(·,y(·))不是利普希茨函数的前提下得到解的存在性.本文的目标是研究问题(1)的解的存在性,并证明它们至少有一个解且该解是唯一的.此外,我们还给出了问题(1)的适定性结果.在对(0)和ξ(0)有较小限制的情况下,利用问题(1)的非线性函数满足利普希茨条件

1 基础知识

设(V,·V)和(W,·W)表示为Banach空间,·ζ(V,W)表示线性有界算子范数函数的空间,其中ζ(V,W):VW,当V=W时,我们将空间ζ(V,W)改写成ζ(V),其范数表示为·ζ(V).因此,Bl(v,V)表示v∈V的闭球,记X的范数为

参考文献:

[1]CHUESHOV I,REZOUNENKO A.Dynamics of second order in time evolution equations with state dependent delay[J].Nonlinear Anal,2015,123:126.

[2]DAS S,PANDEY D N,SUKAVANAM N.Existence of solution and approximate controllability of a second-order neutral stochastic differential equation with state dependent delay[J].Acta Math Sci Ser A(Chin Ed),2016,36:1509.

[3]HERNNDEZ E,AZEVEDO A G,O'REGAN D.On second order differential equations with state dependent delay[J].Appl Anal,2018,97:2610.

[4]HERNNDEZ E,PROKOPCZYK A,LADEIRA L.A note on partial functional differential equations with state-dependent delay[J].Nonlinear Anal:Real World Appl,2006,7:510.

[5]HERNNDEZ E.Existence of solutions for a second order abstract functional differential equation with state-dependent delay [J].Electron J Differential Equations,2007:1.

[6]RADHAKRISHNAN B,BALACHANDRAN K,Controllability of neutral evolution integrodifferential systems with state dependent delay[J].J Optim Theory Appl,2012,153:85.

[7]SAKTHIVEL R,ANANDHI E R,MAHMUDOV N I.Approximate controllability of second-order systems with state-dependent delay[J].Numer Funct Anal Optim,2008,29:1347.

[8]ARTHI G,BALACHANDRAN K.Controllability of second order impulsive functional differential equations with state dependent delay[J].Bull Korean Math Soc,2011,48:1271.

[9]BAGHLI S,AOUED D.Controllability of mild solutions for evolution equations with infinite state dependent delay[J].Euro J Pure Appl Math,2016,9:383.

[10]CHAUDHARY R,SINGH V,PANDEY D N.Controllability of multi-term time-fractional differential systems with state-dependent delay[J].J Appl Anal,2020,26:241.

[11]HUAN D,AGARWAL R,GAO H.Approximate controllability for time-dependent impulsive neutral stochastic partial differential equations with memory[J].Filomat,2017,31:3433.

[12]LI M,HUANG M.Approximate controllability of second-order impulisve stochastic differential equations with state dependent delay[J].J Appl Anal Comp,2018,8:598.

[13]VIJAYAKUMAR V,MURUGESU R.Controllability for a class of second-order evolution differential inclusions without compactness[J].Appl Anal,2019,98:1367.

[14]VIJAYAKUMAR V,PANDA S K,NISAR K S,et al.Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay[J].Numer Methods Partial Differential Equations,2020,37:1.

[15]AIELLO W,FREEDMAN H,WU J.Analysis of a model representing stage-structured population growth with state-dependent time delay[J].SIAM J Appl Math,1992,52:855.

[16]CHANG Y K,ARJUNAN M M,KAVITHA V.Existence results for a second order impulsive functional differential equation with state-dependent delay[J].Differ Equ Appl,2009,1:325.

[17]SINGH S,ARORA S,MOHAN M T,et al.Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces[J].Evol Equ Control Theory,2022,11(1):67.

[18]VIJAYAKUMAR V,HENR′IQUEZ H R.Existence of global solutions for a class of abstract second-order nonlocal Cauchy problem with impulsive conditions in Banach spaces[J].Numer Funct Anal Optim,2018,39:704.

[19]KRISZTIN T,REZOUNENKO A.Parabolic partial differential equations with discrete state-dependent delay:classical solutions and solution manifold[J].J Differential Equations,2016,260:4454.

[20]REZOUNENKO A V.A condition on delay for differential equations with discrete state-dependent delay[J].J Math Anal Appl,2012,385:506.

[21]HERNNDEZ E,PIERRI M,WU J.A C1+α-strict solutions and well posedness of abstract differential equations with state dependent delay[J].J Differential Equations,2016,261:6856.

[22]HINO Y.Functional Differential Equations with Infinite Delay[M].Lect Not Math.Berlin:Springer,1991.

[23]KISYNSKI J.On cosine operator functions and one parameter groups of operators[J].Studia Math,1972,44:93.

[24]KOZAK M.A fundamental solution of a second-order differential equation in a Banach space[J].Univ Iagel Acta Math,1995,32:275.

[25]VASILEV V V,PISKAREV S I.Differential equations in Banach spaces II.Theory of cosine operator functions [J].J Math Sci,2004,122:3055.

[26]NAITO K.Approximate controllability for trajectories of semilinear control systems[J].J Optim Theory Appl,1989,60:57.

(責任编辑 马宇鸿)

收稿日期:2022-12-15;修改稿收到日期:2023-05-17

基金项目:广西壮族自治区自然科学基金资助项目(2021GXNSFAA220130,2022GXNSFAA035617);广西高校中青年教师科研基础能力提升项目(2024KY0594,2023KY0599,2022KY0582)

作者简介:施翠云(1989—),女,广西南宁人,讲师,硕士.主要研究方向为微分方程控制理论.E-mail:2899450273@qq.com

猜你喜欢
时滞
随机时滞微分方程的数值算法实现
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
中立型时滞互联系统的无记忆容错控制
二阶非线性中立型时滞微分方程的振动性
针对输入时滞的桥式起重机鲁棒控制
不确定时滞奇异摄动系统的最优故障估计
中立型Emden-Fowler时滞微分方程的振动性
一阶非线性时滞微分方程正周期解的存在性
一类时滞Duffing微分方程同宿解的存在性
一类具有时滞的非线性系统的跟踪控制