流行性感冒相关细胞因子的研究进展

2012-03-19 21:35王嘉瑜俞雪莲张曦
微生物与感染 2012年1期
关键词:流感病毒中性流感

王嘉瑜,俞雪莲,张曦

上海市疾病预防控制中心,上海 200336

流行性感冒(简称流感)是流感病毒(influenza virus) 引起的一种急性上呼吸道传染病,传染性强、传播快、潜伏期短、发病率高。其中,甲型流感病毒由于抗原变异率高,极易造成大范围流行。在1918~1919年流感大流行中,世界20亿人口约一半被感染,死亡人数达2 000万,高于第一次世界大战中死亡人数的总和。1957年7月,H2N2亚洲流感(Asian influenza)在中国暴发,随即在全球流行;该病毒在美国造成约70 000人死亡。1968年,由亚洲流感病毒抗原转变进化的H3N2甲型流感病毒(香港流感)在美国造成约34 000人死亡。1997年,中国香港地区发生H5N1禽流感疫情,造成6人死亡。禽流感病毒感染人后,病死率近50%,引起广泛关注。2009年4月,由四源基因重配[1]变异形成的新型甲型H1N1(pdm09)流感病毒(即2009甲型H1N1流感病毒)由于在人群中引起较高的发病率,对世界公共卫生构成了严重威胁。相较于季节性流感,新型甲型H1N1流感的易感人群为18岁以下,且青少年群体在重症患者中占极大比例[2-7]。有研究指出[8],青少年患者的重症感染可能与过度免疫应答相关。因此,开展对流感及其相关细胞因子的研究,有助于分析外周血细胞因子表达水平与病毒致病能力的关系,了解流感病毒的致病机制,从而促进对疾病的研究和防治。

1 细胞因子在抗流感病毒感染中的免疫调节作用

天然免疫(innate immunity)是机体对抗病原体侵袭的第1道屏障。研究显示[9],流感病毒进入机体后首先入侵呼吸道上皮细胞,细胞经历凋亡/坏死后启动机体天然免疫应答,并产生趋化因子(chemokine),如单核细胞趋化蛋白1(monocyte chemoattractant protein 1,MCP-1)、调节激活正常T细胞表达和分泌因子(regulated upon activation,normal T cell expressed and secreted,RANTES)、白细胞介素8(interleukin 8,IL-8)等[10],介导中性粒细胞及巨噬细胞浸润。Mogensen等[11]研究指出,外周血IL-1、IL-6、肿瘤坏死因子α(tumor necrosis factor α,TNF-α)和IL-8等炎性细胞因子的高表达已成为病毒感染的标志。研究显示,IL、TNF-α及趋化因子对介导炎症反应发生、调节免疫应答强度起重要作用[12]。TNF-α可通过激活T细胞,促进IL-1、IL-2、IL-6的产生及分泌[13]。IL-1是机体抗病毒感染早期产生的效应分子,可合成急性反应蛋白,并促进IL-8的分泌[11,14]。IL-8是主要的炎性细胞因子,对中性粒细胞及T细胞有趋化作用。IL-6调节机体免疫应答,参与机体抗感染防御[15]。IL-1、IL-6、IL-12、IL-23等在外周血含量上升将导致机体发热、血管通透性增加及巨噬细胞招募等一系列炎性反应产生。

单核-巨噬细胞招募至肺实质及肺泡部位是适应性免疫初始激活的关键。实际上,流感病毒感染引起的细胞或体液免疫是由T辅助细胞(T helper cell,Th细胞)通过分泌不同细胞因子所诱导的[16]。Th细胞根据其分泌细胞因子的不同可分为Th1细胞﹝γ干扰素(interferon γ,IFN-γ)、IL-1、IL-2、IL-6、IL-12、TNF-α﹞和Th2细胞(IL-4、IL-5、IL-10)2个亚群。外周血IL-2、IL-12等Th1类细胞因子表达上调可促使细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)分化,活化自然杀伤(nature killer,NK)细胞,清除流感病毒。IL-2 是T细胞生长因子(T cell growth factor,TCGF),可促使已活化的T细胞增殖、分化,成熟为效应CTL,并刺激其他细胞因子(如TNF、IFN-γ)分泌。IL-12可引起Thl细胞分化,并抑制由IL-4介导的Th2细胞分化;此外,IL-12可刺激外周血T细胞、NK细胞分泌IFN-γ,抑制流感病毒复制。在体液免疫方面,IL-5等Th2类细胞因子有助于刺激B细胞生长和免疫球蛋白产生,阻断病毒与细胞表面受体结合,激活补体或NK细胞,并最终清除病毒及受感染细胞。Th17细胞是一类新近被定义的Th细胞,其分泌的细胞因子(IL-6、IL-17、IL-21、IL-22)中,IL-17是主要效应分子,可迅速启动由中性粒细胞介导的炎症反应,并促进IL-1、TNF-α大量分泌[17];另一方面,IL-17的大量产生亦可导致患者严重的病理损伤[18-20]。

2 细胞因子参与和介导免疫病理损伤

2009年11月,Bermejo-Martin等[21]报道了新型甲型H1N1流感重症患者体内Th1、Th17类细胞因子上升的现象,这是较早对新型甲型H1N1流感患者体内细胞因子表达失调的研究。事实上,流感病毒感染机体后,一方面,呼吸道上皮细胞释放趋化因子,诱导巨噬细胞等炎性细胞浸润,并招募外周血T细胞渗透至感染的肺组织,抵抗病毒感染;另一方面,炎性细胞浸润也会造成机体早期炎症性病理损伤,加重疾病的严重程度。近期一项对轻、重症新型甲型H1N1流感患者血清细胞因子表达水平的研究结果显示[22],当患者处于疾病早期,体内IL-1、IL-12、IFN-γ、IL-6、TNF-α、IL-5、IL-10、IL-17、IL-23等细胞因子血清浓度均有所上升,这与此前的一些研究结果相符[21,23-25]。这一现象说明,在感染初期,病毒诱导天然免疫系统产生大量促炎细胞因子参与机体免疫应答,高表达的IL-1、IL-6、IL-12和IL-23与发热等流感样症状相关。该研究进一步指出[22],随着病程进展,患者体内IL-6、IL-10表达水平显著上升。IL-6作为重要的促炎细胞因子,介导组织炎症反应,调节免疫应答。IL-10作为抗炎细胞因子,调节炎症反应强度,诱导T细胞分化。与普通季节性流感相比,新型甲型H1N1流感重症患者的适应性免疫应答相对处于抑制状态。Lee等[26]研究显示,新型甲型流感重症患者体内IL-17、IL-23表达水平略有上升,可能是由其他原因造成的[24,27]。一些研究指出,在新型甲型H1N1流感重症肺炎患者体内,T细胞免疫应答下调[ 28,29],Th17等T细胞亚群功能受损[30-32]。在某些程度上,造成病毒在体内持续复制,病毒清除时间增加,从而导致炎性反应持续增强,使肺组织等损伤[22,28,33],导致并发症。

1997年,在中国香港地区暴发的H5N1禽流感疫情因其高病死率而受到广泛关注。研究显示,由H5N1禽流感病毒介导的细胞因子失调与病毒的高致病性相关[34-36]。体外研究证实,与H3N2和H1N1流感病毒相比,H5N1流感病毒能更有效地诱导人原代巨噬细胞分泌炎性细胞因子[10],这可能与NS1蛋白结构的不同相关。这一发现为甲型H5N1流感病例中出现的以炎性细胞因子过度表达及功能失调为特点的“细胞因子风暴”(cytokine storm)现象提供了佐证。“细胞因子风暴”是机体天然免疫系统由于某些原因致使多种炎性介质(包括细胞因子、氧自由基、凝血因子等)表达上调的现象[37],患者血清中可检测到炎性细胞因子(TNF-α、IL-1、IL-6等)及抗炎细胞因子(IL-10、IL-6等)表达均显著上升,两者相互作用往往导致广泛的肺组织水肿、感染性肺炎、肺泡出血等症状,许多病例由此发展成急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS),甚至死亡。

“细胞因子风暴”最初由外周血 IL-6、TNF-α高表达引起[37]。上皮细胞发生凋亡后,被招募至感染部位的巨噬细胞被子代病毒感染而发生凋亡[38],同时诱导大量炎性细胞因子产生,引起机体发热、厌食、关节痛、中性粒细胞增多、血流动力学异常改变等[39]。这些炎性细胞的大量出现会加重病情,引发严重的呼吸道功能失调及致死性的肺部病理损伤,并通过诱导包括T细胞、B细胞、中性粒细胞在内的相关血液单核细胞活化并迁移至感染部位,促进肺部免疫病理损伤。另外,由IL-1、TNF-α等诱导而高表达的IL-8、巨噬细胞炎性蛋白10(macrophage inflammatory protein 10,MIP-10)等趋化因子可活化中性粒细胞并迁移至感染部位,进一步造成疾病恶化。IL-8属于趋化因子CXC家族,是一种强力的中性粒细胞趋化和活化介质,可诱导其变形、趋化、脱颗粒,胞质内钙短暂上升,生物活性脂类合成,整合素上调,呼吸爆发等[40]。外周血IL-8表达水平在感染、创伤及某些自身免疫性疾病中明显升高,且高浓度IL-8与病死率有关。有研究指出,中性粒细胞的炎性浸润与病原体造成的肺部损伤相关[41],中性粒细胞产生的髓过氧化物酶和弹性蛋白酶会造成急性肺部损伤。外周血IL-8表达上调,可激活中性粒细胞运动装置,使其能定向游走,促使表达黏附分子,并促进中性粒细胞溶酶体酶(髓过氧化物酶、弹性蛋白酶、β葡萄糖醛酸酶)释放[42]。

3 结语

综上所述,细胞因子在机体抗流感免疫调节过程中发挥作用。研究证实,在此过程中,由细胞因子介导的免疫病理损伤确实存在。通过这方面的研究,可了解甲型流感病毒的致病原理,探索流感病毒如何致宿主严重呼吸道感染,揭示呼吸道感染性疾病的发病机制,为制定甲型流感防控措施提供一定的科学依据。

[1] 熊成龙,居丽雯,施强,蒋露芳,姜庆五. H1N1流感病毒的遗传进化研究[J]. 中华疾病控制杂志,2009,13(3):219-224.

[2] Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H, Gustin KM, Pearce MB, Viswanathan K, Shriver ZH, Raman R, Cox NJ, Sasisekharan R, Katz JM, Tumpey TM. Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice [J]. Science, 2009, 325(5939): 484-487.

[3] Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA.Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza viruses in ferrets [J]. Science, 2009, 325(5939): 481-483.

[4] Zeng R, Li C, Li N, Wei L, Cui Y. The role of cytokines and chemokines in severe respiratory syncytial virus infection and subsequent asthma [J]. Cytokine, 2011, 53(1): 1-7.

[5] World Health Organization. Epidemiological summary of pandemic influenza A(H1N1) 2009 virus—Ontario, Canada, June 2009 [J]. Wkly Epidemiol Rec, 2009, 84(47): 485-491.

[6] Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J, Sugerman DE, Druckenmiller JK, Ritger KA, Chugh R, Jasuja S, Deutscher M, Chen S, Walker JD, Duchin JS, Lett S, Soliva S, Wells EV, Swerdlow D, Uyeki TM, Fiore AE, Olsen SJ, Fry AM, Bridges CB, Finelli L, 2009 Pandemic Influenza A (H1N1) Virus Hospitalizations Investigation Team. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009 [J]. N Engl J Med, 2009, 361(20): 1935-1944.

[7] Rello J, Rodríguez A, Ibaez P, Socias L, Cebrian J, Marques A, Guerrero J, Ruiz-Santana S, Marquez E, Del Nogal-Saez F, Alvarez-Lerma F, Martínez S, Ferrer M, Avellanas M, Granada R, Maraví-Poma E, Albert P, Sierra R, Vidaur L, Ortiz P, Prieto del Portillo I, Galván B, León-Gil C, H1N1 SEMICYUC Working Group. Intensive care adult patients with severe respiratory failure caused by influenza A (H1N1)v in Spain [J]. Crit Care, 2009, 13(5): R148.

[8] Rothberg MB, Haessler SD. Complications of seasonal and pandemic influenza [J]. Crit Care Med, 2010, 38(4 Suppl): e91-e97.

[9] Julkunen I, Melén K, Nyqvist M, Pirhonen J, Sareneva T, Matikainen S. Inflammatory responses in influenza A virus infection [J]. Vaccine, 2000, 19(Suppl 1): S32-S37.

[10] Chan MC, Cheung CY, Chui WH, Tsao SW, Nicholls JM, Chan YO, Chan RW, Long HT, Poon LL, Guan Y, Peiris JS. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells [J]. Respir Res, 2005, 6: 135.

[11] Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production [J]. Microbiol Mol Biol Rev, 2001, 65(1): 131-150.

[12] Janeway CA, Travers P, Walport M, Schlomchik MJ. Immunobiology: The Immune System in Health and Disease [M]. 5th ed. New York and London: Garland Publishing Inc., 2005.

[13] Vohra N, Verhaegen M, Martin L, Mackay A, Pilon-Thomas S. TNF-alpha-treated DC exacerbates disease in a murine tumor metastasis model. Cancer Immunol Immunother, 2010, 59(5): 729-736.

[14] Evans SW, Whicher JT. The cytokines: physiological and pathophysiological aspects [J]. Adv Clin Chem, 1993, 30: 1-88.

[15] Biffl WL, Moore EE, Moore FA, Peterson VM. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation [J]? Ann Surg, 1996, 224(5): 647-664.

[16] 柳爱华,宝福凯. 近年来固有免疫中的一些重要进展[J]. 自然杂志,2009,31:218-222.

[17] Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family [J]. J Leukoc Biol, 2002, 71(1): 1-8.

[18] Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages [J]. Nat Immunol, 2005, 6(11): 1123-1132.

[19] Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells [J]. N Engl J Med, 2009, 361(9): 888-898.

[20] Kolls JK, Lindén A. Interleukin-17 family members and inflammation [J]. Immunity, 2004, 21(4): 467-476.

[21] Bermejo-Martin JF, Ortiz de Lejarazu R, Pumarola T, Rello J, Almansa R, Ramírez P, Martin-Loeches I, Varillas D, Gallegos MC, Serón C, Micheloud D, Gomez JM, Tenorio-Abreu A, Ramos MJ, Molina ML, Huidobro S, Sanchez E, Gordón M, Fernández V, Del Castillo A, Marcos MA, Villanueva B, López CJ, Rodríguez-Domínguez M, Galan JC, Cantón R, Lietor A, Rojo S, Eiros JM, Hinojosa C, Gonzalez I, Torner N, Banner D, Leon A, Cuesta P, Rowe T, Kelvin DJ. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza [J]. Crit Care, 2009, 13(6):R201.

[22] Yu X, Zhang X, Zhao B, Wang J, Zhu Z, Teng Z, Shao J, Shen J, Gao Y, Yuan Z, Wu F. Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6 [J]. PLoS One, 2011, 6(12): e28680.

[23] Lee N, Chan PK, Wong CK, Wong KT, Choi KW, Joynt GM, Lam P, Chan MC, Wong BC, Lui GC, Sin WW, Wong RY, Lam WY, Yeung AC, Leung TF, So HY, Yu AW, Sung JJ, Hui DS. Viral clearance and inflammatory response patterns in adults hospitalized for pandemic 2009 influenza A (H1N1) virus pneumonia [J]. Antivir Ther, 2011, 16(2): 237-247

[24] To KK, Hung IF, Li IW, Lee KL, Koo CK, Yan WW, Liu R, Ho KY, Chu KH, Watt CL, Luk WK, Lai KY, Chow FL, Mok T, Buckley T, Chan JF, Wong SS, Zheng B, Chen H, Lau CC, Tse H, Cheng VC, Chan KH, Yuen KY. Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection [J]. Clin Infect Dis, 2010, 50(6): 850-859

[25] Hagau N, Slavcovici A, Gonganau DN, Oltean S, Dirzu DS, Brezoszki ES, Maxim M, Ciuce C, Mlesnite M, Gavrus RL, Laslo C, Hagau R, Petrescu M, Studnicska DM. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection [J]. Crit Care, 2010, 14(6): R203.

[26] Lee N, Wong CK, Chan PK, Chan MC, Wong RY, Lun SW, Ngai KL, Lui GC, Wong BC, Lee SK, Choi KW, Hui DS. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults [J]. PLoS One, 2011, 6(10): e26050.

[27] McGill J, Heusel JW, Legge KL. Innate immune control and regulation of influenza virus infections [J]. J Leukoc Biol, 2009, 86(4): 803-812.

[28] Arankalle VA, Lole KS, Arya RP, Tripathy AS, Ramdasi AY, Chadha MS, Sangle SA, Kadam DB. Role of host immune response and viral load in the differential outcome of pandemic H1N1 (2009) influenza virus infection in Indian patients [J]. PLoS One, 2010, 5(10): e13099.

[29] Bermejo-Martin JF, Martin-Loeches I, Rello J, Antón A, Almansa R, Xu L, Lopez-Campos G, Pumarola T, Ran L, Ramirez P, Banner D, Ng DC, Socias L, Loza A, Andaluz D, Maravi E, Gómez-Sánchez MJ, Gordón M, Gallegos MC, Fernandez V, Aldunate S, León C, Merino P, Blanco J, Martin-Sanchez F, Rico L, Varillas D, Iglesias V, Marcos Má, Gandía F, Bobillo F, Nogueira B, Rojo S, Resino S, Castro C, Ortiz de Lejarazu R, Kelvin D. Host adaptive immunity deficiency in severe pandemic influenza [J]. Crit Care, 2010,14(5): R167.

[30] Agrati C, Gioia C, Lalle E, Cimini E, Castilletti C, Armignacco O, Lauria FN, Ferraro F, Antonini M, Ippolito G, Capobianchi MR, Martini F. Association of profoundly impaired immune competence in H1N1v-infected patients with a severe or fatal clinical course [J]. J Infect Dis, 2010, 202(5): 681-689.

[31] Jiang TJ, Zhang JY, Li WG, Xie YX, Zhang XW, Wang Y, Jin L, Wang FS, Zhao M. Preferential loss of Th17 cells is associated with CD4 T cell activation in patients with 2009 pandemic H1N1 swine-origin influenza A infection [J]. Clin Immunol, 2010, 137(3): 303-310.

[32] Giamarellos-Bourboulis EJ, Raftogiannis M, Antonopoulou A, Baziaka F, Koutoukas P, Savva A, Kanni T, Georgitsi M, Pistiki A, Tsaganos T, Pelekanos N, Athanassia S, Galani L, Giannitsioti E, Kavatha D, Kontopidou F, Mouktaroudi M, Poulakou G, Sakka V, Panagopoulos P, Papadopoulos A, Kanellakopoulou K, Giamarellou H. Effect of the novel influenza A (H1N1) virus in the human immune system [J]. PLoS One, 2009, 4(12): e8393.

[33] Lee N, Wong CK, Chan PK, Lun SW, Lui G, Wong B, Hui DS, Lam CW, Cockram CS, Choi KW, Yeung AC, Tang JW, Sung JJ. Hypercytokinemia and hyperactivation of phospho-p38 mitogen-activated protein kinase in severe human influenza A virus infection [J]. Clin Infect Dis, 2007, 45(6): 723-731.

[34] Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses [J]. Nat Med, 2002, 8(9): 950-954.

[35] Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, Gordon S, Guan Y, Peiris JS. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease [J]? Lancet, 2002, 360 (9348): 1831-1837.

[36] Lipatov AS, Andreansky S, Webby RJ, Hulse DJ, Rehg JE, Krauss S, Perez DR, Doherty PC, Webster RG, Sangster MY. Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses [J]. J Gen Virol, 2005, 86(Pt 4): 1121-1130.

[37] Petrosino AL, MPH, CHES (Northwest Ohio Consortium for Public Health). Cytokine storm and the influenza pandemic [J/OL]. http://www.cytokinestorm.com/

[38] 吕进,王希良. 流感病毒感染介导的免疫病理损伤研究进展[J]. 生物化学与生物物理进展,2009, 36(8):961-967.

[39] Moshage H. Cytokines and the hepatic acute phase response [J]. J Pathol, 1997, 181 (3): 257-266.

[40] Baggiolini M, Dewald B, Moser B. Human chemokines: an update [J]. Annu Rev Immunol, 1997, 15: 675-705.

[41] Martin TR, Goodman RB. Chemokines in acute lung injury[M]. In: Lenfant C. ed. Chemokines in the Lung. New York: Marcel Dekker, Inc., 2003: 189-220.

[42] Mukaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8 [J]. J Immunol, 1989, 143(4): 1366-1371.

猜你喜欢
流感病毒中性流感
流感大作战
急性发热性嗜中性皮病1例
简单易行防流感六法
冬春流感高发 加强防治最重要
抗甲型流感病毒中药活性成分的提取
英文的中性TA
高原地区流感病毒培养的条件优化
流感病毒分子检测技术的研究进展
高桥爱中性风格小配饰让自然相连
FREAKISH WATCH极简中性腕表设计